Table of Contents
Introduction to PCB via hole s
Types of PCB Via Holes
Through Hole Vias
Blind Vias
Buried Vias
Microvia
Functions of PCB Via Holes
Electrical Connectivity
Heat Dissipation
Impedance Control
PCB Via Hole Design Considerations
Via Size
Via Placement
Via Spacing
Via Aspect Ratio
Via Filling
Manufacturing Process of PCB Via Holes
Drilling
Plating
Filling
Advantages and Disadvantages of PCB Via Holes
Frequently Asked Questions (FAQ)
Conclusion
Introduction to PCB Via Holes
Printed circuit boards (PCBs) are the backbone of modern electronics, providing a platform for the interconnection of various electronic components. As the complexity of electronic devices increases, so does the need for multi-layer PCBs that can accommodate a higher density of components and circuitry. PCB via holes play a crucial role in enabling the creation of these multi-layer PCBs by allowing electrical connections to be made between different layers of the board.
EMTWdS6ehKtbU6D+ytMZSptowejAqOK4TXNNk069drdZFtzhkYZwD6V1tp4w0y2S6a4jnnlc7l2x5B46ZrIt9dfWr2eCWBBbsGMaHkqPes3Pljexw4z2co8q3LWizSzafE8jFmwRk9eKr6e0ouNVhjTe7TAKo7k9quaWixRXMSDCxzOAPQVl22oLYa1dRspDTSxtG4H3WArlpP332MKElTa5mWr8T2dneLdQPFMc7VI4PHY15rduWlJweOte46jfWd/YCO8t3mYEEeSuWP0rh9eg0q6shBp+jzpMMjzPLwSfc1t7l73PUTs+ZHDQSkZw3Peo5n+c811Wg6GV883tk+zjY0g71R8R6faQXcYij2K0YOB0zmso2dSxm8Xy7ox7ZmDlsEjaea9E8GRlgGUHO75uKg8O6p4PjsfsV/ZneQCZPLDEn610f/AAlngzTYlhsIW6c7IyMH3JroUbDdWm5czZm+JbjRrS+Rbm23yOmd2M8CsldR8MMdrWpAPGSvAzVLxNq9pq1zbzW4b5EIbcMdawgTWjpc3U8jEVrVHy2aOv8A7Lhhli1HTSJYxy0QOeD6Vpad40tNOa4Sa2uFY/w4H3h6g1xdlqN5YuGhkO3PzIxypro4/wCy/EMTAJ5N4i5JA64+lZe9TdpbF0q75bU9GaU1/petabqVwYM3eWcOwGQRyKw9H02ACHUNQMawKwYJjg49am0GIxrq9q5yybl9sgYp6MDohLDcLeY7h6hGrGcpN28y1iZaSZuwalpdtfHUU0qdrURlBIsWQD/eANJqXi+w1aKWwtLSYvIjoNy4xkY5qsNRW9+ytbahDHbKgSS1ZF3MemAetVIYY7bW3AVQJ4N64HQ5rolLki7HTVqvlTi73I9P0+x0lUkuT5l1Jwka8nJ6AAVW1OPxMkj3X2Z4YV5VVwSF9SKpSXr2mtSTzFnEUrAAn7qn0FdIl/CYrnUJr6SW2dCoifG1D6ClFNO8upy0nCpFq9rHDzXN7fyxiQtLMcIgA5+gFXf7B8Rf8+M/6f41p6JYPJeNqLoIoA7vFu46ngiut+3r/wBBBP8Avpat1Ip2M6WHjUXNORytlLFGk8KyvE8jIQyrk8dsVfklSQTJKk0au0So7ISX2duO5rFgCyzwo8nlozAF/wC6PWtO7KPNZQPcJHAGOAj7nGP43YcZNa2PcGm4VLy4uJopY4zGyRll5PG0CotIVWvWYZwqOwz15pupOxEMe9PLQNsjjfewHTcx9TU+goTJdyekarz15NCEXdUISynJx8wwPbPHNMmEkFpb/ZJLWO4aOP5pgCCAMmo/EHmCwCqMtLPGnr8ucmsq+stU1A2otoy6xxYYg4AIFYtNy0MK0pRacVc2o9ZsoFC3EsfmkL5hiHylh6U552v4ppNLaDzwVUvKuQB3rm4/D2tPnbDk/wAWTyK6PQdOvLGK4W4QK7uCAOeBUThb3lucUKlZ1LyjoZ+rCVoraKSNXvQuX8hcAj1xVWMaro/lSDc0Mih5E5wvsav63a6nDcPfIAsSoqhs8kelY93qd3dlF3MkflqjKDwx9aa5pJJnHinaTclZ9Dfi8Q6dIER0bc2BgrkAn3qz5d3HPLcy3Smy8ssIdgG0detcxa6fPNLDsGQpVpM9lzXXXqbrKeOLlzHtVemeMVEo8jSidOFqVuV3RnHX9JBx5ZOOM7Bg1es7u3vAJoB8qttYbcGuVbRNVIBEQxjPUcVv6HaXNpC8cy7Hdyw5HIxWqpqLugw3t1VvNaG0vytkZOcn1FcNdENdXTEAkyOPcc9RXdg4z16HPT07VxlskEuoxxzKXSSZhhTt6k4ya1PZLiJ5enBprZGWSMrGiR85/wCerv1pxjSDTsz2sf7yLESxpyP+mkj0WgjLasZjK9tabvLi3nYcttAOO1XVs0eS7jyxT7NbtHDLIwiQyds5z9KBHJ46nHrmtayvUSKCzI+d2zE+Bhc1BqUFrDdSRW4YKqjeOcLJjlQT2qpDb3j6hY7UJQeWxPYConqcuKc1FchvRQ3dhHqE9/cNcQup2I2MKT0xS6Pe2stuIi4WRCxKsccZzxmrGqWd7cWMkMSl5HK4A6nmudHh3xEOlswPbDAH9Kw5faQtLQ8+u605J2Ov8yL/AJ6J+YpQ8P8Az0T/AL6FcZ/ZHiEMVNtcZHXDHFU2NxA5R2cOrEOm45BrP6r5nK5ShrKJ2JfSzeSNv33QVYxGOjBuBzWjA0kJCSxLGG4AkcE4JxnmuS8PQS3F7PtK+YmyQ7zywBzjJrr9SSaaCVDEFbbkOWBCAc5GKpqULRPcwfLKjzMaWh82WNGQ7DgiPGM/hS9Ac9K5bw3HL9qvmZ3ZVyCWJOSTnPNdQyhldSeoK/nXJUjyyPKbu2Sta2LWkd35sD4f5olK7iOnSub8QT2swWPQYW+0mPbPtAG057Yol8OuChS5nVZWIzlguTz2qC80/wD4Rh47qfzCroGwzZ3+4rqSdkepRcrK8bHPTadq0Hky3kTAk8tnIyexNWI1HIPTipbzxDLqeyFY0ETtlduc56d6hjbG7OQAccj0rsidJL5eMhTjPJNLEoVwTnGecdaMqec8UqMA6HOORyeg+tWBO6uynkK2eMdx75quq4kJPUE4pxktmds78g8dRk9zmpCuZl+bOVXHr9DikgKgilmkWOJHeQk7Fj+8W7VoaT/adndxQ69bTJbySgo8gLKB6VUgvZdPuluURWMTEbWJAOeOa25NaHipFsI4xDLFIgypJO72rOrYS2OwsLbSr17praKIW8YAJkUDJ9s1zFxHp9v4lVLMpho280R427/wqYeF9XjzbnUp4vlyRGWG7PrisiLS7vSNas4p33iUsUkGfmHvnvWck+R3OHFSlZe6b9iT5uor6T/zFY8unz3euu8e0CDy5H3dx7YrVtCBeaomefMRvzFNS6i0nVpL+7jZrSSJVJVdw3D1FclF2nY5YxjNpS2NK31DTYpiLqYQxKANx6E96ptq+il5St1GV3tj6Zrn/F+paPqDW8ml7lRgTKACvz/SuHKzhiA5xnvVVMPKStFnq0sVTpPlZ6/BqmhSQTqbxDLyIY1GWdq5rX7K51Awy28DFowVZMfMc9CK5TS0ZbiF5ZSqI6u5B6KDyRXpGpeJfDkEEK2Ej3EqxqCdpGTjuTW1Oly77o5q9SnWTbZwX2C9idY5oJIsnOXUjj61HOmJCqkEAYrurTUtN1eIxyBd5HzRvgMM9wawtW8PyWoe4tSXgGWZf4kFXTrpu0tGeTOmuW8NTm9poAq1a2lxeTLBbrukbJA7YqS+02905kW5Tbv+6Qcg4966uZXsYWbXNYpAHp6+ldP4cvLHTjJJdRO0jcKVwcL6GuYRyLi3UY+ZufpWwx2gk87RuqZe9oergcPb95I2k1Kwh1C7uI4pBBMuCMDO496bDqVlHaX1s0LYnMhTgY+bnmuRfULgsdu0LngYz+dXrS5+0A5GGXG70+oqeVHpezj2NZ20lbWzEMLC6hlR3YjqAckZrQm1Wyk1DTrlY2CQoUn+X5jn0rE5PcUnHPHWm4p7k+xguhpSS6LPqN/PNCWt5kAi+X5g2OciooZrFNMvbJ0O53ZoeOODkZNUse1H4U7IPYQ7GncXsUlhZW6b1eNkEwXgFB15FTZ8Mf8APF/yNY/NO/ClyIfsYdjMfXbA5wgB2kLhGHPvzUa63ajJKgnsSjHt9a5wKPenbFwOT6+1Iq7Og/t22/uDr/cP+NaWmeK7C0WZZY3/AHm3BjiB6euWrjNq0mAM07hdno8eu6frMiQQCVXiHmHzVVQwJxgAGum0XZEkueoLDnoRXkmiTGDVLAjpJJ5bD2Ne06fYxT2BmU7BGXeVuxwMgCqUeor6laCaZJp9uNrOe2fyqfJG7cCSeR7mqdsd7yFc7d2VNXpCBFzkt71mzQxfEW6PRpWc5LyIAM9AT0rhVPQ56EflXXeJpX/syBSfv3YwO2FHrXI5wBxyM04rc8HMm/aJHT6C7Sx3swwMMiLn0ArcD7scjJ6D3rJ8LxIbTc+drTkn8BXRXAhIQxIpYde35YpSdnY9bCp+yVyg0rKevAyWz6VVn1vS7SS1lvn8qOVHCE5wSp9ufpVqUGZxGIsb1KjGTkmuI8V2V79nt1mUx/YnkVxJkEq+NpApPozoOsPizwp5chF8mfLfapWTOcHjOK4hdetI5hLGdroxdGyev0IrlzGowfMXPpg00qoxmRfyNWibnWweJ1tpHkic5kB8wNyG78gjFPbxVuactIxM2wyHPXYcgDjtXHYjxnzFz6YNJhcZ8xeuMc5+vSnYLnXXHiGC5aWVnTzXCjPPPGM9K6zSVMkNpIhDblVtw78dq8kCjj51/WvYvCEcj22nQFQZEgG7HOQeRUySW4bnRMqrCrtgEdT0xTASys0buSvPPerWqQwwxRRqWMjNlgf5VTh3KMBT8wxzWUVoaECXl0WZQAx559K86vn3X+oMxIPnvjHqDivVktoYojsxvYEk+5ryi6ONQvTjpcyk/wDfVaRs3oeXmX8NG94R0lNTv7kyztFHDDvcqxVzk44rq77wm5tbp49VfYI3aIOxAIAJ+YiuY8LSRfabl5C6nYVOwdR6Yrpr2SyNjejz5gfJk2j5sZx0rCdWEZcrNMJGboXS0OQ8LrIlxexsxOFGTnqQcV1EnCOw6hSQPUiuX8PXVnBLdLO4R3wEZzgEDtXSfa7L/n4i/wC+1rlrJ89zzY7amTL4q1JrM2Mmn4UMdkiBhJweKp28kutXEUOttM8MabYhKwRQuexNdvb6M99Ha3UUsPktksOG3Dp1FZXi7wzIY7dtOSZpHjkUqnJ8wDgqK61Tuk0etRhNJXkcv4jsfDenQNLYSRrcIwWNI5d3bqcVybatqbdZF6DJ2LzRIuo27SwXcQDxblZZ1x8w7fWqS3S7tpjiwD2Fbq63OkuHVtTA/wBYmOP+Wa9qYdZ1Pn94h7cxr/hUTXERUjyosnvzVcXqqrKbeBsnIYg5HbjmmnfYSaZcGt6mpB3x8DAzGvSpE1/VkIKvECM4IjXIz6Gs8XdqAALVDwOWY5z36Un2y35/0WP25NPUZv6TdW9/dW9vfNtSSTLyZC8deTXXX2iabo8Ueo6XPLDcGSNwyOJAw65xXndtNG+9kgQMCoUAksc/3RXbeE9C1/U2jvZUb7CbjylywwuOvy1E02K2mhuWHjBrWWSW5jvb+R02ksgXaR028YxWDqviG81DUob0xLF9mP7qIc4B5+Y+tenHQY43XyEi8vbhuACT7iuI8b6Zb2ZsLiONUeQvHJtAG7AyCRSUdLM4cXCp7NtPYit7q21NvPtZfs2ogDcjH5ZMdiPStGK7R822oRrFKflKvzHJ7oTXAqzIVdWKuvKlTgj6Gu7tku9Q0K01CaNGWBjukwMjY2MmuadDU4cJ++dhJ9I0SMhZbXBI3gIG6HvxVf8Asjwydx8g/IVDZ34Ut0zVrUNWgjaGe2Zpi1m8MiggKrnlSM1Ui1qB1uY2t5AZ44BuyuDIoCsT7elZuE76M9VYSnvcml0bw9b7fNiSPcMqHfGR9CaYuk+HLjKRLGWx/A+WHvxWiI9L1m8tIQwlkjT7hXIzxwTWZ4g0q80nUba8sLUCGJV85Yvu57ggVo6UrXjI462H5FzJaGFqelT6TIk8Tkwl/kccMp64auvTddaeoBDNNbcHsSVxVe3u9J1mB4ZChI4eJyAyt6jNUIU1XR7wQxxTXOmsQV28tGD/AHT7Vk26lr7o5oQUXpszBgi1rS7wPHA6zISuCuVYGr/2i5169tYNTUW1vEshZlO35vctXZJeaf5Tf6Le3M8mNgeEr5XOOTWfqBH2rSp20d4zHKEijbhbiQtgGTHpXa0t+p2wwaStfQ4vVbTSLS5gFnNMzq+G8xSFI9VYgVKCCAfUc/St7xTDqm2Npo9M2LcMDHER5qEjOBk7sCsBSCqfqK1ud0YpKyKj6fEzbgzLk5x1H4VYgt44FIXJLcknqamz9MdKUY9cdBzTLA8+v0oo4/qfSj3/ACoAKKOBRnP50gDkU7mm9qdxQBwv2a69P1o+y3Xp+tegt4esAT8l9k9M+T/jTD4dtACAt/8AlF/jWH1iB53tqnkcB9luTjj9aX7Jc/3f1rvT4ftSBiO9B74EX+NKvh61/u32PQiLn9aft4idep2RxdpbXMUiSYGVYEHPIPqK72LxpqsGnw6abaFkjGwuCQ0i9cNiohoFoATtvsE4xiLr+dSLoVoNvyXxA6Z8rr9M0nXgzJ1a7d0wTxRcLGrraxK4PyoHbH1NK3jC+kwr2cW0nBAcj9af/YVk2NyX30HlD+tKNCsMglL3PbPlcY/Gl7aAnPEdzM1TWJdRSCEwrGluzMNpLEk+pNZpD45PLdR7V050SyJ3EXpOPSLn9aT+xLLOdl7nr92L/GqVaBzVKNSo+aT1Mu01l7K1FmIS22RpN6uVJz2NWl8TODn7O2McjzTgn15qx/YVgxYlb7J74jz/ADpv9gWA4233vxF/jS9tA2i8RBWTIT4tuIzG0dou5HDIS5yCOapeI/E8viCBEmtUgkVNrvFz5pHILZrRbQbAcYvun92P/Gon0Gw28Lfn6JGf60vawNFVrrdnnTLMONp/Ko9kp6q35V38mgaeMb5byEN8qyzQr5YbsGKnisS80670+Ux3EfB5jdeUkXrlW6VpCrGWiN/rMkrtHNeXJ/db8qXy5P7p/KtnZ7fpThGx6LW1xfXPIxlilJHyHqO1d54f8V3+huzrapcLJCsexzsCbehU1zyx4PAP41OFbbnB4/Opeu5jPGTb91HUSeM9TupTIbIFieP3hwo9BUw8Vakoy1rH6n990Fcj5j5wuR9eKsRZk+Vvl7VFrEfWqj2Z0f8AwmN2TzaAj/roa59nMjTTEYMsjyMPQk5xWzpdhp++6klV7tre3aYW8TANIw6KKuw2dtq1uztpkmnyK+wB2yHGMhgDzRzJDlSrYiF5Mb4RjF1NqCoj+dGisWB+QRnrketdVNYBYXe7by7XA86QDJVT3wa5QaNe2MF81rLO4YRl5IVZSgQk8le1YLzazJHKPNvJI1yr72k2AD1B4rz5YeNWfPY9PD1ZU6PIdHc6LosrSXLTGC2iV5JXRdwaNe4A71WbSdBvdOuL7R7uV/spxMkylTWHY6pqlsQBKWTkGKQBkIPBGDWjNf6lPbmGOKOCFyTIlugVT/vba7YxklZnludGSa5bsl0fxTquiI1ugEluG3LGzEYPfFby/EmQMjNpinauP9aep6kcVwro6thh15z1BpvlMxARSx7ADJJ9MCtUjmhi6sPdOluXvfFVxdXNrosWZCcyvJtQPjqSepqpZ/D7VUuYpLqO2eEFjIqygk/pWz4fnvbGzjjwI23uWDqNw/OujXVLsKMNH+KL1rjliI3cT6Cnhp1IKUnuczN4Mt4Y3kawG0KxypDY49BXnMlnEHkG3o7AfQEiva5tYvQm0NE24EEeWo4x7V5fdRATTM6gFpHIXpjJyDj0q6EotvlZw4unLCpNdTn/ALLF6Uos4yRxWsY0POMUvlrnHSuux57xku5VsVFjcwXUaIzRMG2yDKt7EV7D4e1xfscbyaWbUH5lEb/LISOX2mvK0SPfEMcb13E/WvQ5NZhsH061/sq4uUmiQtcRqdik/KEUD0rGqpfZZ2YSpOq3qb+peKLaxt5LwW0rvGAoQuAvzVwV7ql/4uv4IXEdvEu5o0zkADqSfWl8WXU7XQskwlqoSXaOrMwz8x9q5pJJInR42ZHU5VlOCKIxny6vU5sRipOTg9jU1fR5NKMJaVZI5dwUgYII7EU/StQ1qE21rHLMNPe4TzYtuYiM87uKzbi8vLoobmZ5SgKrvOQB7V2nhO0XUNNuoPtK25y5RiFOWHP8VOz5bS3M8PFTqvkdkYviixaSeK9gnULPKlqIYvkUOB1BXisCXT9RgVmkLKq7mbEoJAXGeAa6DV7t5rP7DDCoubW8E32oZKYTpsUfrWA8mqSiVXuIm8wFWJVRwRg44pwcYr3j2PYp9TX0b+2LOzudXsLwRvGWjIK7pHXgHrxT08Q6+LmGS9mkkjdwHWVMBkJ5I4q1or/ZNMaxe3eV55cxumSvz4G1qteLbSWGx0aWQbNwZfLYAOp9x6UvdnojmxFJxjzRlt0LOrHwhbyWIntp/MvFVxPZowVN5wNzL3rL1G41fRLuCCG9le1OySIyKGIQno2fSsq21nU7eNIY5A6KcRo6h8H0XPNdNay+IJoIpLizsWzjb9oO1yOvQis52jujD20KqXKrM1mvJ54YZJvENtBC8eCII0ErYwcELzWVeTaaWYw6xqE2JN0zzq4XZxuKe/atwwakqQtD4fsVlOcyzS7kwV6jgCqeoDWjERcS6Q6KVdbWAJuBI45/LNU9j1YGLr9tpX2YT2+jX6rujcXbthtpHV1BJ596w4jlFK57gZHOPeui16ZGsd9z4lc3Jii3wWybrbeuP3f7tcDH1rnIWDIfnD/7QHDZ71qWiTcATxzj8velJJwMHgUnbvxzQScjIOc/hxTKFIA4/lSnOO2ev50nOBz9M044xnnP1pgNz1pcnPAoOeMfSm9+h9+aAFx1J7UvPpQB055p+B6frQBote6Tn/X2X/gPN/jSG90rj9/Z9P8AnhN/jXQm3tTnNvB/3wv+FMNva8H7PB/37X/CvI549jwbyME3uljH7+zx2/cT/wCNH23ShyZrP2/cT/41vNFZIrSSQ26IgyzMiAAfUiqtvcaZci6eK1UpAMhvJGJRjJ2cVcWpbJlKM3sZYvdL4/f2fqMQz/41It9pIOftFpz1xBNn17mta1OnXcKzQwwejxtGgkjYfwsKn8i2yf8AR4f+/a/4UnKKdmhWkt2YX27STk/aLT/vxNn+dAvtK5zc2eMf88Jv8a3fs9r/AM8Ic9/kX/Ck8i1z/qIf+/a1PPELy7mF9u0of8t7L/vxN/jSi/0r/n4tOn/PGfp+dbnkWv8Az7wZ/wCua/4UvkWn/PCD/v2v+FHPEfNLuYP27SeouLL6GCf/ABo+3aV1+0WWMf8APCf/ABrd8i1/594f+/a/4UfZ7X/n3g5z/wAs15/Sj2kRXfcwJZm8h7myhsruJM+b5ayB09ypOaoJc2mpDyZMWV1n9zJGzCKT/YfPStW80m4tZTf6S3luuTLAPuuO+B3+lZclvaarue2UQaguTNasdokI6tFn+VdEOVrQxm5FVJ9S0m4aGUFlbiaKb5opU9ia14Xs7u2kWNTcWWCZrN+bi0Pd4GPUe1ZsN6uP7O1WJ3hU7I5DxPbE8ZBPOKtjw7qltJHPZ3cOS/8Ao5D+W8h7BQ3B961cb+o6Sn9lXRlX2lm3UXFu4nsXJ2SgfMh/uSDsazxleAPeutinczPFLHHbaiflmikGLW99mHQMaoXekiZp5LFDFNFzPZP/AKyP/ajPdaqFS2kgnTvrAwQOpIz1NSg5UHHvilJZcgghl+Ug9jQe2eoP8633Mou24zYc7hznnpRuKjb0PU4qT5jgdue39aQLk84x79qC7X2EgnubeQTwyMkg6Mpwfxreh8U3KoBNbRSP0LqSpPvisEpkH3GOnHWmlGG0qAB6ZJqZRUtxXnDRM7XTfGyWqyLJE67mzsTa6Nxj5t3NWbjxppEtle2yaeEM6OGYIgBdhjdiuA8vHoTg/nQI24569KFFJWRvHFVYx5RyMglVyfl3Zx3ArrbHUrWC0WNR84zv2xh/MBOc5rkNhz0/LmgCUcDOD6E/yFNq5FCtKk20r3L+oSxMzMqBd8jMApyFHpxUOls51HTguSWuYlAHck8VWZTxngY+vNFjdJa39nPI22OKdJGYAkgKc5AFBKvOrzs9BkhvI2lN1E0comfcrjB2nAU/jSHoAKlhvLjW4zdwpJKJThWZcfKny85qf+y9Qx/quf8AeH9a8KrTk5tpH2lKcVFXZTKgIzAkkDPNZ50O0mKy3plMkw8xdrbQU6DituTT76KGRnhfA5PGVwOe1cbrviy/u79ntHjjt4o0hjAjXOU4bOeeua6cPTmou2jPNzJxlBG0vhzRjyTPj/f/APrVKPDmi/3Z/wDvuuTj8R64AB56f9+1qyniLXm6SIfXES/0rf2dbufPylBdDo/+Ed0YAHbLnIx8/pW3HFOY0EakoqheuDhRjmuC/wCEj1lWUtJGRkZBjArtbC+v/stvMS8TyjeyMvAycj5WFc9aUqKvUZ3YCisQ3y6WOU8VQXMN+sksbqkkMflsw+VsccVhxW9xcSLFBG8kh6LGCxP5V1Xiz+0742k5EkyW8T7iAMJk+grI0PUFszer55tpLiBoorpVDGBj/EAa76NRSgpROKvhlTxDhJ6dynPpOsWv+vs50B6Eof6Utrp+rzq5t47jbH/rNpZMV1mna3FpkF1HqertqW9g1vsTcyAjoWb1q/pWuaDfzMtxN5EO3Y/mkRMSehBz09arnd1obRw1JTsplTwbBsjvRK8SOJfmM5UHaFPHzVcYWmThYMbmx/qz3rk9bWKS9eLSruP7OrSors+wSZOM7uhBrkjd6jGWTfJ8hIO18jg44INcOJoTq6RZ7OFqwpLll0PZLZrdbe7YywIIlLKN6Bi3BAVeua4jxHb6obue7m857SVlMMjuWjJI6Lk1m2VtexPY3Ml1DIkyJOyRyb5EXP3JB2NekTyaDaaXEl1e2Ur7VlEYYShCRkcDNb4eDpxtLoc2LjGtd3scH4ajSTVYA6BkVJHYt91cDgnNS+I7vVftrwzSMLeI7rVY/lRkP8WV6mt3+0rMrcf2K2m/a3iCR+fGAASfmIBGM46VXHl3ltDFrz2aTAuu6GRRtXqrArxk+laKzfOzgVBexvGRPYy6XLp9k12mtyzceZFGZGiI/wBhi2OanuLeyMUjQaDdwR+WhN1K7b0HOW54qay+2WOnpHa+IrBLRWzG0ohaVATjgnnj6VBPc2hZvN8UT3crQvtjiUiEkHodo7/Sr6HoU9Ugkj1abRlWz03TYrRrWUQreEmaREOTMS2FBrk4c7SDGIiMZjHIU+xrfP8AZDWb/a4NU1K63SJcyWit5NvuGVjRmbbxxnArnbQxYYRmXavAWb76+xzVx2R0FjBxz16df607b0Pr1owfTrznsc05sEY7jH5dqsBuO1Lzx+dGMDj15+tKBwM0ANIz/WjFOoHGc0DEA74/z0p+D/nNJTsmgDrzwTyeaD2qaK3uLhzHAm9wN2MgHAwO9JPBPbyCOZCj7Q2Dg8HoeK8Pldr9DwOV2v0KV4SLeQi1F0vBeEnB2jqwB6kViz/bnltr+y1Ga2sbZUTyooyvlFfvqwHBz3zXTRRzSyJHCpaR87VHXgZpZ7W4ttqXEKxiTJ2naQ2OpIFbU6jgr2NqVWVNXSMrTmMpmn+yCEP92YgK0oz/AHR2rQ/EmrJsb4Q/aDCRBsD78rjZ2OAar4NRUbcrsyk5N3khO45NL+dTQWd5c7zBCXCkKxBAwevemywXFvIY5kKPgNg4PB78VHK7XtoTyyte2hEecUvelwfTNHPPFILDc0vfOaTkUcmgkcO5zWXqWkxXZE9u3k3aHcjrwGYdN2P51p8j/wCtRk5qoycXdFX6M5ORo7t/smrKLa/jIEN2RhZMdFl+vrTdTt7GWW0bUjdxT2qKiiJ/3MiKd2+M+/tXSX1hbahEY51ww/1cgA3Ifauaa4+xSy6TqY+02kbBVdf9bBkZDRk9vau2nU5tghUlS1XUo6lffb7jzACoQKqc5OFHBJ9at2WqI4iivndWiGLa8T/XQf7x7rUTWGjbmKaxCFz8u6KXcAezYFH2DSsZ/tm3z1x5cv8AhWz5ZbmF6nPz3NW8sre+KLP5UN1IAbe7i4tbwehI6NWT/Y2rZcG0c7W25BBDD161es5LW1V4f7Ws57aXOYJ4pWQN2ZeMg1Z8/SxwZdMGOfuXf+NZqUo7HTyxmryMl9G1cAbbaTp3x+XWmjRtXx/x6S++QDn9a2ftel959L5H9266fnSfa9KPHn6X2HS6Gf1p+1n2J5KfcyBo2scn7HKO/GDR/Y+rnn7HNnPA471sfa9Nx/r9LweB/wAffX86PtemA/6/TBj0N3n9DR7WXYfLTfUxho2sZObOYgnngdveq9xZ3tqR9ogkjDcqWBAI+vSujSexlIjhk0ySQ5CoZLlN5/ugscU5TvSWAQPJGpLXWmXDZnh9ZLV26jv1pqs+qF7ODWjOQz3x/PFBbkYJVScZHp71qXul7YmurGQz2e47uMSQHukqdQayCD/WuiLUtUcz5oaMWQsNwIOf0x61RlGfX0q9IdwGc5Axn1+tRRQ/aJ4INwQSyrGWPbccZps1pSu7HoXhzxJo2leH7W2uknMzBmxEoztJ9TV+Px3oMbH/AEK8bPQuyEjFefXUcMJECyeasKeWsi8Btp5OKpbnKkDoD156Vx80r2R7ylJaHq58feH5YpkCTxybSEDorAnHfFeOT4NzdMBw08rdMdWJq1GhyMkE7lIweuDWvceFr9nMsEsLwSgyqzttPPUFT6VtCdviOavzTRgp2rsoH1CPSrE6Bb6fJMxf7d9pCPPn+FVD/wAPrWZ/wjvkqizX9ktzIAyW5lHmkHkce/aqUkVzYy7N7I2AQyNj+VaPXY4ryw755R0NzW9KnubVbyC3jW4RQ1zFbn5N2Mnys9cc1o6f4o0m0s7S21GC6luo7eLzJcIysSMgfPzx0rKsvEjxxiC/V5EUAJLHjePZhWzqHhH+04bO90u8WWS5SNiky7HCEcYB9O9czjKcuWSOvDVeaTlDQkn8V6JcGC3t1lt4ZGw5nVQGlA4yV7Y4qnfeG4LxDNp+FnbLeWP9XJ3+XFZviTw0+jW9m8rxs8x+bymLLuUYPWoNE1y7sHjtmbfCwYRB+TG4BIwfQ9KPZSi+aJjiGpVeWfUoPpuqRu8b2lwGQkEeWxwfaqskcsbFZEZWHUMCrD8DXYW3ijWbiCK58qyTejsoPmlhsJB3Dd04rmNQ1V9VuTeSpGksyDesQITj5QR/Wumz3MsRhFSjzJkIjkmCpHG7lVORGC3B55AqMWNwckW82B1wjHH1xV3T9SfTDdzxKrP5Byr5wUyMjiugfVptNgk1BLCALIIyMM+xhKMZI3n+VKzHQw3tIc3MYeh6bFe3ZgeYwRrG7zOASRGoywwOc+lathB4OvJZzYm5m+yqZJI7zMblQT84C8YqO31fQ9MFzNYie4vpyoPmr5UMQPzsFwc8HgVSuNcuJlmWK3tbfzs+cbeMI0h/2iOTSV2OMqVNOM9WPOsQI52aXYKAW24Dg7Tx1Bph1eFuul2GfcOf60ml6fZ3ovLrUL0WlnaqHmk2lmJJwFVR3NXZtBsLq1kvdCvTepAcTRMu2ZDjP3TS5I3OdUqso86Whp6XNHeWMkkPhyCUoSomikAjVuvzqwz+tazDXdkIXSdJs4mDphyu5sjdtUn5vTHNcv4fexWK9iu7++smJA2wCbZKvcERg81ok+GdkASHWb11lADOZVVc9T379KfQ9Si/dVy5bPqS20sS6nZaNAlwfIR0h82aQ/fkLOSdpOegrlVMonnElxDcYeQCWLHz4bknFb2nC3aa9S20yTULkCMytO0caWsAJAh5BOSOuPWsSdDDf3Syaa1jJ5zExAkoFPIA3U47HYPBPc5weP8A69OzSY7Aj6Afyox6j0/OtBig/wCNGecdKAKCMUAFBNJg+velGf5UAANLz70Y9aXAoA7qynNteW8ueA4V/wDcb5T/AJ9q1vEEAK2tyO2YWPs3zL/WsFgMn6V0iE6horqeZUjK+/mRcj868yi+aEoHlUPehKmU/D8G6ee4PSJAi/778n9P51S1ac3N9Odw2Rfuk+i9T+ea2LT/AIl+jPMRiSRWlA7ln4Qfyrm8E5zyeSfcmir7lOMPmKr7lOMPmdRJ/wAgEf8AXlH/ACFcuQQOvvXUS/8AIBA/6co/5CsCztzc3VtFjILAv7IvJqsQruK8i8RHmlFeRvWxGmaSszKPMbbIwPdpGGAfoKg1+EPFbXifwkIxH91+VP8An1q/fx6fOqQXU4iUESBRIqE4BAzntSmG2ubCS2hlEqCLylbcGO5Rxkj8K6pQvFw6WOqULxdPyOP7mkyfXinMrKWDDDAkEejA4IqGaeG2gknncJFGNzNjP0Ax3ryfI8iz2JQDx9KTHXvWQmpatckS2lnbrbyHbbm7lWOSbH91SRUsOrCMvDqcYtJ1PGQ3lvzj5T1zWrozSuXyOxp4bHWjntVL+2NIyV+2RZxnHzD+YpP7X0fn/TYen+1/hWfLLsToX16fWuD1t86rqHJwJsev3QBXXprGijH+mwfmf8K4fUJRPfX0yNmOSd3Rh0IJ4NdWGVpNsmqvcViAEHIOADSH8OM/4d6Nr4JCn8ePxwaCCB9f6etejocnKbGhRRO97L5Mdzdw27SWdtM21JpeAFbJ/SteN5Li2nOuWNpa+XKBGY1ETSxkfMNgJPHGK5FGdWDISrDoV4I+hqRpp5SfMkZ+vLtnp9alq7OyliY04cvLc0xB4dmlaKK6uoi5KxPNGPKBPQMRzioJdG1WJ2QW0jqPuvGrMrDPDAjiqMWWkQAdWH869BtNQeKWGJ3bZEuMJkrjaOuKVnHqGHoxxF+bQ4SWxv4ELS28iAk/NICo9cDNRRQzzvtiRnbHRBkn6Cu58UXdvPp1v5UquWmY7QQWGEPUVzPh+VodQWVeDGjsp/A+tVcmph4wqqmnuU/7N1Tr9kuBj/YbrWjBfOnk22qCVHiIFteLxc25xkbu5X6128OrwSQs7FVcEjHr6VVnl0i9l8lxbTT+WvmhlXecjsaxqtct2jqlhI0leMjG3yJKkjSww3cq4iu0GbDUF/uTL0DVQvNMS7aQ2sRtr9FLS2Dn747vbt0Iq9c6be6WJnt4Wu9JlObi1k5MQP8AEh/kajDwPboyma5sIyNkin/iY6Y/qe5UVim46ohxuuWaOVdJEZlkBV1yrAjBGOxBp+nxxy6hYIxIVriIMV64LdRXR3ltBeLELySMSSDFnqcQ/cT56JcgdG96wZLTUNOuoy0ZE0LrIhILRsVOQwI4IreNRSRzqn7Kal0O5v8Awdp08aSabeFJsk7JwFWUHnIJHWuQn8N+KLeSZEineMkKGjQOD3OCBVyTxNr37rc8Wdu4jyhgZ46Ckj8Va6m7Y0QzycRkD8OaqJ6zxdIvaN4L1yc7r8pBAoLbrhFDEDnC96k1/UrnS7qHTomtpIoYB+82Z8wv8xGQeg7VRHjHXNwDmDn7xZCenQYzWNqOoXOpz/aLkRiTaFxGu1cAYHFPlT0aOfEYqnKFoblmS/0i4kFxc2Aa6BjYusrBGaPhSy+3FUry7e7neZgBu9P6CqeDSjjGewxVpWOCdadRcsmLvI3Y6EYPGa0Itc1qJEjjvrhI0XaihuABxgAVnfLzwfYf/XpNo5GPpk0MmLcdmXLnU9SvFCXV1JMFOVEhzg+1VYgGntgxIzKgBAyQScUioec8AfzpAjO8Sr94uoBzjvSZcJN1E2b0ekeJbc/Zo7aPyEaVELmQttck/wAJx3rFvtNvNIuVtblcOI1dCTkMjE4KmunvvD/i6yl0iO2nuLiOYLKRDLIQzEglJGBqHUtNhtpYzrz3sN024pHEBMAhOfvsenpU8ztqexiVemc7bwzXUz28SF5Z7eVI16bmxkDnitc6b4vuoGtprZUVgqAbiduzptyxFSW1npFzdxR6Zd3q3b7o4jKixrub5eHU8Vomz8YJdPYfZnZ4YTvkhkkYgD+JWBweKIzb2Jwn8OxxzxXFvcTW8y7ZYm2OOmGAxzTj3H+c1a1C1urW9uEuS5nVgJC5JYsB1YnvVbBJ6fl1qzya3xst2OoS2RlASOWKVdssUyho3X3BrRi8Rz2kbx6ba21mrnc/lJnc3qdxpsWjx29mL/VZDBE4/wBHtx/x8TnqMKeg96Ytz4ZwN2l3hPci6A/pWbkuiLjKcFbmsbnh/V9dvpp44k0yaQjLJPBtY54DAx4Nakx8QIk6zavpVipCHCKikAHGOMtnrWDpx8ONK27SdXTcoKNExkwPXHyn9a0FXSGMqReG72cbWbNxnJYcA4HzY/Gktj0qD9xEcT7Hu1vda+zWro2ZbF1SW+uTztBiUnAGOAKw7prUXzrbajNdRr5ZP2lWWRmI5Pzc8Vt2onj1MG00qMXslvKsVtcyMtvaxAAs/A3bieg9qyNUOpNdxvf2mnI+0RBrLgoQc5dSc5PvVR2O4crBgQp47DvSj374z2FR+VwSpx7E96UFkOCx5POf6GrGSYPIOfQcdvek4xj/AD6UZ4z2zz/9egAHkcjn1/KmADHpyKPf8ee1L36UmQACOmTQAfp9elLt9xSLk4B47+nvzTsj1NAHYkDcfm7VqaTfw2f2hJy3lybSNoLfOODwKzfUkUgHSvEhNwfMjw4ScHzI1dV1C3u47eC3LCNWLvldo+UYUDNZHHzc04jBpMcdKc5ubuxVJucrs221KybSxaBn877OsWNp27gB3qtpNzZ2kk0s7NuKhIwqE4B5J4/CsznIpRnnIqvbSclLsX7aTkpdizf3Au7qeYE7ThY8jGEXgcVa0m/hsWuFmZvKkCsNqlsOOOgrLOfSjBNSqjUufqSqklPnW5YvXt5Lq4lt2JjkbzMFcEMeowf881Q1TS7690yVIlBWQxyKwIdcqc7X28ip8HB4+lOjeeFleJ3jfuUbGfrQpLm5mRe8rs4y9sbG9ktZrz+0ILi0jjt3hjQlD5RyCjY4z3xWyo1i/Cuhit4OqG7iEsj54yA3IFdGbmKXP2uAEngzW2I5fqy/cP5U37G0gDWkyT99jfu5x9Ubr+BrplWcl7ptOpOceVO6MH+z9WLBjeWR/wB6zQ/0o/s7Vz/y+WP/AIBx/wCFaxDoxR1ZWHVWGD+RqtdXtvYxma4cKP4VH3nPoorn9pNuxz6LcwYH1OSfUFeewhtrEsLm4ktohGoU4zjGee1Th57mPzdMvtOuwrGNlFpGrCTGQpDDIz1FU7T7ZcvqciWQfTr9z5kdw4VW53fKxxyOvFa9lot20Tmxht9Oid9zybvNkdwMAgjjjtXekranZh+ScGle5jmfxUCytYR5BIP+hxnn64qSOW/kDJq2lF7RvvSQW4jlg/212ithfCVyxy+s3ZycnYH+vdqiufDmtaeiXtjqUs4jcBkmJXr67jt+tJoydGtH3mtDmdQ0uS123EDCeymJMM0fIx/dfHQ1Q2v/AHG/75b/AArtLJpReRIkSW93JLA15p8ozbXK7wTLbk8bu9d1reqpo8ccq6a12GDs6wmJXRVx82GHIrWlK61JWFjUTnex4iqyl0AV8kgAhWH9K6XRNN1lJ7t5be4CtZXIQuGG52XC4zXSp8Q9LeREGjzAswUEvBgZ9eK3IPFWnTSGNoTHtyNzyxbeOwOa1kk+pdDDUr3U7nkdxZapbKDcQzoGyCXVgDjrio7eC8ndkt45XcjIVFbdgc8ACvWdU8X6bp6Qsbb7UHLZEUsJ2Y7nOetVNP8AHWm3sskaabJEUjZ9zSQjOP4Riiy7kywlLntznnf9meIP+fW6/wC+H571XC3tpdQtMsqSRSKxBDbl5zzXraeLbVyoFlN8xAXEkTE9s4HNNuvEpimeNNFmnA24kMtumcgH7r8+1J26s1lg4Q97nOQe/wBekvYLqDUrZNMV490b5z5AA3pJERyTzzWFqN95WrXF3pe+KMyErtQhXU9QVxjB54r0ZfFErMFHh6brj/X2uB70268beH7Joo7u2ZJpFDsqKkixqxKhpGA71FobXOmcViI8sWcVaXMd35ptYkSaUf6XpswItbrjl4C3Rqs75LaIDOq20GdqGWKGeO33dAScttFdpL4jVI0lh0dpgSc+XNbhl9Dhh37VB/wls+D/AMU7dY7/AL+2NZOlG/xHO6UYe65/gcBcXWvWk8QllWSCQqUnSCNkkTOcghatXNzqI1GOK20u1l0pvKVpdg3yoQC8ryZ4I5wMV2yeL7aRJY10mcXcWWazlaFJWT+9Hng1mn4jaYhKNo9yrKSGUvCCCOxFaRUe5VN0qN+aV7nn+pJALuT7OjeWCRwrY69apFHz91/++Wr0z/hY+j/9Ae4/76gpT8RtI6/2Pcf99QVqrHLOlQlK/OeZbHwRtf8A75b/AApNr5/1b/8AfJx/KvTf+Fj6N30i4/76go/4WPo//QHuP++oKehPsKK/5eHmWx852OQO21qTaw5KED3BH6mvTj8R9HHXR7n8DBV/xjPpcnh6xurm1kaC4uLOVUhKJIpkjZxk47Um9LlfVoSi3Cd7HkJ/yKRCVcMvVSCD6Ed62jP4UGALHUCD/wBN04/SgT+FOf8AQtR5GMiePI/Ss+e/Q5lC3VEcfiXxJCAsep3SqBwA3HpVa6vdX1HEl3LPcFPlDyAsQD74q9HN4T8xM2l+BnrJKrID2LKozj1rXluPERe1Okx6YdLURhkxFtLdZGmLfN9KFI66VOVZNOZycE81tIssLFJU5Vh1B9ea63Qdb8VX010guriVI7KYqQowkgGE+bHXPSsXUoYrvVEhsVjD3DKgVCBGHPBP0rrotL8U6fZ2Nro1zp9sFDNfM6b2nnzwNxH3QO1TLaxWGozc2k9EcBez3lzPLJeM73O4+aZBhywPO4etbkEWl6HBBdXgS61KdFltbUf6uFWGVklP9K39a8NXmqNb3MYtYrtolF6VLCN5QMFk4obw3cTX+lzTtbvHa2tvHPES2ZGjz9046GlJ3aD6rUjN9fM4q5k1TVLhp5lmmmcgDapKqOyIo4A9K14LCw0aGO71gCW7fDWunqRuPo02Ogq4bnxCby6W+tLK3sI/MeKW2CRCEIT5aoynJz0IIrO0qRbnW55ZkWZ2iup0E2XAkjUuuQfSnPbyFUoqk1d3bNC0n8X3N2twS1tBJ+8RXhVrdIwOAEPOK11TUrsyTS6+EjCMFEUK2ysX6quR+fNcNLrGrSXn203Uq3AI2mMlVQDoqqOMVJea9q9/GI7qSN1HZY1T/wBBxVRj3Ko4iEFZj/Ed1c6bOLfT9SuJh5SSXMkDH5XIPyMw7Dvz3rlo5riTe6+Y0o3Mz7mLkE5Lc1oBpoyXgAEhBDHbng8fxcc1nYltnEqbgysSfQ+xq9FsdtOtCWxr2viERIq3kTSHP+sjIDNj+8DxVg+I9JyP3F3jv/q/05rnp5ra4kjZl8tmx5uwAKWz1rovDXhAeIzqX2eaRUs4g2cx/M7AlRz64pnVuIfEGl4JEV117hOR9c0f8JDpnI2XYBx2T9RmpdO8Gzahpeqaiksix2P2gPuCctb/AH1+oqBvCU6aDHr/AJkgtS0edypnZI2wMo+vWi4WJR4g0jOSLsf8AU9PxoPiDR88C6x0P7tcfgAadf8Agu6sIdFnmmZRqciwQjCE+aw3KOPWlufBF9bappultI5lv4TcQYVSdi/eLc9RRcdhg8Q6OO13nHH7tSAR+NJ/wkWk+lz/AN+x/jT4fA+ozaxeaMHb7VaokkmAhUJIMqxbOMGnf8K+1v0P/jn+NNagehYbnmkw3HNOK9uaTAz3rwj5+woB554pMH1pPXrRjpQAuD6/lQAfXrR+dBUAe9IYYPHPNJg880egxQAeaLCFw3rRzxyKTkY4oxQAuDzRhvlweQc57j6U1mSNHeRgiKNzMxAAHuTXP3OqXWoyNa6WrLCuRPcsdmF7kMegqoQcnoDaRrX/AImFmRamNNQnOFWKTJ2H081fmB9qoXFnoU88NxdXjwahMhePTdUmBhV+yG5jHC+gYCsX7Ta2GYdMHn3jnbJeMpYqScFYFP8AOrsqRabFa/8AEnbUb25jee6mumfCNn/UqF/i7816EI2WprRjKu+XcqalZeJDKftlnOqAAQfZ132oQ9BC8WUx+Nb1neahFZ2sQmkjVEA8sYG0gYwRSyeI20aJR+9AmSOSO0JR/KVh8yyD7vB46VaivNI1GKGeW3ks3mG/zLb54iT/AH4WOfyNc+KbVlHQ9TAUYU6sluV2vL/p9qmx/vYH6VVuppvs9xmaVl25IZ2IOB3BNaEmm3Ox5rcx3kC5JktCXKj/AG4/vj8qoatbSWtvcLuEkctsJoJUBCyIw6gHnIPBFcC9pe7PXqKLi0jI0nVVa40+1viZoRdQfZpQf31tJvUDa3XHqK9A8YNGtxo3757a4YXC21xjMO/5P3U3bDV49pjk32m5P/L7a/8Ao1a9T8f6g9jcaIrRrNbTx3a3ED/dcAx4IPYjtXvcnuux8zSvCnLmOXvtMW8kcRxraaqgLSW4OIbkdTJbt7+lYLQX6M6tDcBlbb91+CDz2rplktprVGDSXWmAgpIn/H7pknXk9Soqtc/8JVE+ba6nuLd13RTQ4YMvvgcGsITa0OSrGL1RnWWj6vfM+1fLgVS00ty/lxIo5JYtUsmiTxW813ZX1reRxHbMbSTLRMehYcHHvV63n1p1e31Kzu7q3kRo2+Uhgj9QcCpCsdlbX8Wm6VeiW/VUuJZQSfLXooXpWvOawp0HTu73OXE0ysNruCOhBOfzpzzSyHMkjsehLOxP4VqWWgTzmWa+nisYIUMsj3BKsFzjITr14FPudCtzBJdaXfx3sUWRMVGx4yBk71bn6VpdM5fq9Vx5ktDG8yUMGV5FK4IwxB4+hrTGsb41W6tLa4kRQBJIgL4ByN2ODVGysru+k8q3jLPnLk8Ii/3mY1of2Lb/ADA6tZ7gcHaHIyOvOMVDcUFH20daZUur+8vnAaRlDMoCR/KnOFBwO9aM0OiaescN2+oTXDCJ5mhDBIhISAOTkn1xVf8AsqyBGNYsOPUv1/KtSOZ4o1RtY0uQBcI0ilmHoQSKmUl0OmhJRk3W1IZ7uG2kSzvnkkhTBtbuMkXVrnlSG6keoqS7toLpI/troJZF/wBG1S3UtBcAdFuFXo1Zt/YXkqvex3EV7EGPnSW5JaNv9tTzVK11HUbJWW2uGRGOWThlz67W4qeW7vAznUXM7rQvf2JGTxqdjz0yZP8A4mmto0YJH9qWH4mTH8qYde1r/n64/wCucf8AhQuv6wGDGdXA6q8UZUj0IxTtU7mfNSfQuw6ZYWdtc31wf7S8pVMMFixCOSwX53xkAdTxUcsVhfWEl7BZzWbROY2jckox45RmGcc1LbMt0XudHb7LfYLT2Qb5Zh3aHPH4Vm3upalcbo7l2+VtpQrtII7EVUXfc6fa0o0+Vx1M9s4f8RXp/jAMfB2h7VJIbTCcDOB5BrgdESOTU7VJYhKpLN5bHAYgZAJr13WpPL03TG2wC0ae3W9SZcqLUxNuCg9xxitU9y8HS54S13PESc59f60qRXLKzRxSsndlUkD8asXhtjezGBf9H85tg/6Z7uB+VdY914h8yxbQ7iyTRxHbL5LCMDOAJfPDDcWPNS5GNDDKpJxb2OJzhuevpVyxtNRv3kitDllG9k37RtPGeeK0PFA0/wDtSX7GFC7EMoQYUSkZbAp3hZv+JkwJx/o0nP0INDIhSXtuS46y0fVLHUtOa5VVYTJJgOGJUEAnivUfJkigYyKwInIGR1U85rjNQivYrxZLuExBwHjLNlTF1GCPzNcjP4p8QJK0aahcEKxGC+4cexrJ35j26cI0Vyo9dBGTxSwxPLdRlEzhckkcDnqa8fbxT4i2qftsnOfTtTU8U+IC6D+0Z1yQPlbb147Uotmjmkb+saDr0+q6q1pE0lv9qlK7XGB3PGaytADJrdpGx+bdNC+O+UYGuz8KXF3NdSROTIDbgyu2Qzl8/Pz1wa4u0YQeJYh02amUP4uVrSWsGzzMRQjCSmu5lTr5c0yAfdkkX8mIqLPWr2pxiPUNRTst1MOP941RPUVrHVI83q0aenJasY/OVWHzAK7bYy46Bz79qfqulwW0kQMtvIZ4/O2WzhxFk/cfFZSyOhJUkEdfQj6U7z5DkNtw3UKoXr7ilY74YhQhy2M2e0Us2wfxbVzx1OK0tMbXdJh1J7f7Vbwn5HkjZkBliBbAI4OOTQFhZlHQll/ImvXVsoh4bFgqwyu9g7yKxUbnuMlWGedwo1vY6sJUdSLueM2uo6tb2F+I7q5WOUv92VlXfNhZCVB5yOtJLqOqjRYLFrm5+zu+0IZW8oxKd4QR9OvNdrDpsjeFdSt0t7aS3FyrNdgoHhdCMjBG7B6VLq+liXwx4dza20SQupW4ymZAcrsbHzZPWlc6+bQ4m/1TWZU0eOS6ui0Pk3CiSVnHnJ8qOgPTA4qSfVtabVrORbq7EluGWHMzM8ayjMgVz612uuaYZNQ8KytaWtvIkUEZAMey6cOpBAQfgc1cm0pI/GVvOtjaN5kO02eYgrYjw7KPu49KV7FXdzz221fXDql5cre3nmvD5UrrKwkMMRG1Wfrxij/hLPFP/QXvP++67nSNGii1vxEG0+CeORJy9oDGZLdS2VAzxkexrnf+EbP/ADzi/wC/i1a1bIcnY79prf7Qtt50fnsu8R5+baO9COkpnEbq5hbZKFPKN1waxLhp7FkfT9PilkmLCSV90oQKBhOTn5vX2qZWtDdW8ob7FdTonn28DllMmOU5zwea832CUbtnDKgow5rmsQcDmk+bI6cUrckCkA965DiF+bBJpPmwOgo5xRzkUhi4b1pMHHBoz9aTPTOaYtAIbjmnANmm5yfanLn9aGNWbOa1ETX+o31vPcNHYafEJpFTqQACcDuT2rFutR82P7LaR/Z7FekY5eU/3pW6k1rs/wA/jSXjiNYgRyeWA5rl84z3FelRinuYVtFp1Oq8L6FLfu2oCaJY7OVPkOMuxHQfSui1uwvU0+e5t3iWaNkO7cA7JzkDBrD8MA/YZ25+ac4x6AD0p3iSaSHTXKMwYyxjgkVxVMUlWULHv4TBR+rqfVo4i7lkklkaRyzEncTk5I+tdppaSyadYlUdsRjG1Tj9K4e2hvNQmKQqWYklj/Cg9WPTFetaFquh2WjWVleOPMgBXfCpZW56hhXZXpqr7tzPAydKbZQtYriGdZmt7ohc8W8hhk3djvA6VJrtzqWoWEqyWAijto3KyDc8nzDBLufXqeK0pPEvhSFjzcMAefkxn86gufFmi3lpPYWMciyXCmLL7cYI71nHDqEbKR6Eq6e55NpuRqGmj0v7Xp/12WvSfieQJvD/APuXv8464qz0q2TUrP8A4mtllL+3JQFt2RKp2jjrXoHxDsobuXQ/Mvbe22Ld4E5IL5Mf3celd0ZrlueRKDdKaPPbG+urKVZoHwx4ZeqOOm1lPGK2j5OoqsmnXhspyR9otXlMcRY9WiPSqS6PagAjV9Pzz/E2P5UNo9tkD+1tP/76b/CspOMtTzYqcdHsaxGn6MkZ1a81G6uJi+2O0lYKqpjcxZj+VRa1Gbe3sb7T768a0vUEkQlkdZEGM4IJp1uZYIkhk1PS540/1f2j5yn0LDNQXltJelfN1fT8LwiB22qPYVKcep21JQdK0VqUbfVHCmO+j+1wsoQ+Yx3gBg2N315FakBjlt7uSCMWFhOwa6nc5eXaPur61SSz0mwBuLu8iuyvEVvatkO3+2T2pQt7qx+0XTra6dB9042xoo/hjXuacpJ7HLCrVhHkbJYZnu5YtN0qF4rAsPPYD97Ko5ZpX/kM1fun1uPUYrSLSrQaKjIgO1Q/l7RulklJzu69qxbrVAI/smmq1vaD7z5/fTH+87CqBu7zlfPlI9Gdm/nTjFlUsWqV01cn1RbZLuQQEbNxwRjH5VQ5/SlO9mzkkn6k03DdCCD7jH8636HHN8zckWbO9urGZZbZyrkhXU8pIp6q6niuk1VfB9rLCL9GSW6gjuUForFYkk43yHOPwFcjgkgCtiLWW8mGG5tbW68hdsLzoGdB6A+lZta3R1YatCGlTVEOp6dHYvGYmLRSgtHnkbexBNWNHtNMa21LUNQWaWKyRStvbY8yVnIUAHsPWqN9e3F85aVugCqo4CgdgB2osbnUbJjNa79pUh/kLIw9D2psmM6fteZLQ1PK0q9t5r/T4Z7GS0dgyuxOGUBgVkHXP0qLxEv+no+BmWztZGIH3mKck1Zs76e/tNdWdI/3NnvRVQIFYvyQF71B4h5ubFs8Gwtv0WsU7zNsTKMoXgrDtDt4UK6m84j+zSmMIw+WRmXj5q9K8QTSDw1HNGF3vHZkByAoDgA5Y9OvWvPfD2saFp1tew6pA06zMWRQm4KQuAR712niu6ji8KafLkhJvsKhdu7erxFtpFbcu7O/COnGndfMyraz0qcFZ7eBZ5GjXYjrIok27mjRh1x1P1qLSjt/tUrbwKIJ5BEY0ZNyqucEP3rhP7VnU5W32EZK4OMHpkYFWLXxFq0ataxbUt5WYz7grMQ33sP15rGEHHc3dai9ja1HQJYLK+1JrtHkLb5oGQmRN7cAse/NYNhff2fMbgRLKdjRlGJUYbvkc1266joGoaFLpVtOU1CeEHN0dqmUHPlq56+1cBdQTW80kEyMkqHDKex9q1PLxCjCalSO3ttcuvEWnahYyWjhrS2aa2mics3mDojkjke1ecSRbfPDIRKTgMxIMbA5OV/Su9N5qdrpmlL4dt7V42gLagWVXnknLco+SMKBWX4njtDNayhI4riWJWuY4jlQ+B3pK7Z11HKNNTuYEtjt0mxuxK/mSXM8LggYG0AjFRqlrI1tiIxbVCysHLeY2eXOen4Vv29st/oZtbfa93bXjXJhBG9omXBKA9ay7WOBbiEThlVZlEgII2jdzkGog90zllXlou53mj6vFomhPcQWXnXSTNDJKzHLwdd20c4HSuLW7WfWEvQmzzb6OcrnON0gOM12d1c6r9ut4rTT7KTRNiRwmJRuEO0Bnml6561yer2S2V+jIhjjm2XESnspboK0XwtG+KUlGMr6Bry7NY1UdmuCw9gwDVnwWd5dyCO2hklc9FQEn9K1vEqj+1JXH/LWG2k9smMVe8PSXo07VlsrhLSfdCr3J2ho0JztDHpnoaIy9xM4KcFOryt2ObubK9tDi5geM9DvBHNV8dK7WK4SCMDXr2G+KNKVWICVmQjhHb61FZwabqCXE8WgQR20RJaae6kjTr0zRKpyq9jWpRjGXLGVzkcHkHn9K6zTvGepWsCwGwtbi62pFDMynzDgbVyo6mrY0/RWwf7P03/gOpHr+IqxbW1rZStLZ2Glx3W0iKSa98wR5/j2sKz9tfZGlKE4bSC1S60/RdStLxUk1DW/M+yWUQ+dPNIZmcDgAfpTr2C5Oi6d4ZULcar58c0ixZK20Sg48xjwDzipod5lnh02ZbrU5F3alq8uGhtUxkrFnjI7AdKW2hMwkstJaVbeQkX+psc3F4/8awseQPVqjnaR1c3Qj1GOXUX8P6fZlHm0qQvfXMe4xJKSD5aHueKsahHc3XiXSJbEK32K1SO/LNlYQpOQ7jjdjtUQv7KOdtF0uZIBDHJJe3kY3CKNPvrAe7Hu1c/qWuCdY9J0hXhsWkVJHzie8ctjdI3XBqo8zvciVdR1uWrzXvsPijUdUtYRcQebtPlswjk2qBnI9+tV/wDhKY/+gXD/AN9yf41p3MniOEQ2ul6datYwxQRzQPEjM8n/AC0eZ2G7n+HFWP7PH/QHi/Kt41EaunUeqkWbextrRp/JDhJQoKMSVUgdVB7021sLe0LMgZ5XJLSSfM3PYVlnxJ8xBsZhgZyx/StbR746pLMnkmERRh90jDBJOABXnKnUk7M44Rc2olna2elGD6GtKSJAhT5ecDOf1pI1t0wA0Zx2LZOar6su51/UvMz9rcfKf1pMPn7p/KtQy2obY0sYcjIBIFRLcW8jvHG8bMn3lB5HvS+rLuH1LzKGG9D+VJzkVexMXZhtCAHdnB4A7VysviJYpJI/skrbGK7lYc4PpWcqDXw6nPWw/slc3Mc9KcpOfoa57/hJCT8un3Dc9QQav6dqi3xulMEkLwpvIfHII68VnKlKKu0cy0ZgFj/Z3ieUYzLfJHn2Dk4rOs9Okug88h8i0jGZpn4XjsueprVtUWbTBG2CLvWkVh6rnJFZ+t3U73dxaBtlrauYoYoxtQBe5A7120278qM5JWUpHR6P4h0DTLEW8dlJMPMdllLYc9ssMVS8ReI9K1GxSA2EqrHOJJHDgMQBgKDirOgeEbnUdKS8inijkkcmNZMkgA4ORU+p+Do7exku9VvBFHGDvMCZYntx71cqfdHuUnL2e5wUuokwm0sovs1qRmQKcyTH/bbrV6CWZbK1MbkKFdZBn+JTnFNFn4WHS+vQf+uIxXXaP4Ss9S077Zpt35n7wnyp0KhZF7UOzVkjko+/OyZx1xO8iRhs55ycc0lsHiurJkYku2TjqAOTXT3HhLxRJPseBQudqlQNmM9qoa/4TvtFhtJ3uV33DFHSI/MAAOM04xa3OmpT5VzHP2hD6vaMOQdSgweOR5616h4/sZL678PxoBxHeEljhVBMfJrza0t0i1KwUE/Lf2o5/wCuq16h45vzYXOiyYQ74rtSrjhhmM9RzXStjmozjKEubY4K80lrPAJVlYNskQ5UsOxFZZXgcc5wfp0rWvNV+0qoAT5MlEjB2gn+Ik85pLXTVEYvdScwW2con/LWc+iLWbly7nn4mNOU/wB0XGj8O6RZadJe2k17d3itKUDFEhiXAyT/AHvQVV1iysYTFNZB/InRHRXBDYYAgYPNW3126u5Ira0sI2AAESMN7YXgE5GKvBXEgZ0S71FRkIP+Pe0Hq56ZqHOx1N0qtPkite5j2un21nCL7VQVU821rnEkx6gsOuKp3l/eahIobCRqQsMEfyxoOgAHrW3dw+HxcwxarqEsmo3SoSUBaGDzOEDN2/AViX1r/Z1zhTnDZU5zjaacY63Zz1qE6UU+hr2+gaSrQW2oatDb6hcKpS3bkqXGVDnoM9qx9S06bTbmW2mPKHgjowPQ1u27aPqpfVbqFDc2nlNc72ZRiMYVsDg9Kx9Uv59avjJFESzkRxRqMnaOAKpPUrERoezXs9zQ00C30q8u7WxjvNQ3pHEsg3pCh6uUHXFSXMa3WhxXt5Zx2l8LhotqDYJUAzv2HkVVTR/FOmRG5EM8SFcttJ6f7QFZdzeXlzxNI7Ef3s0+twdZU6Xs5R1Kw3H5QCSTgAcmpXt7mEKzwyKGGcspHX61r+G5IYbq4kKQNdC2k+xC5x5Xn4+Xdmtmxv8AWZbXVo/EwtDGUZ7ZlWNX388KE7dMUXJo4aNSm5uVjj7aLzZ7VCCVklROOepxXX3N94it9Qgg0m1t/wCxofKjKNEmGGAJDOT82euKzLVobDTJtTiiEl01y0EJflYh/eC+tRJbeMb6Jp0S7eJ8lm+6G79qzu5MvCz9j0u2ac4sBdeJRZBRG2m7mC9A+csBVa/0+61S80i3t9uTp0DuzEBVVRksSfSqmkpOh15JUdZBp8odX4OQe9X7jUPsEulysm+KfSkt506FomGDg1l/y90FzKWs1oV7jw1F5E8unanbXjwD9+kbD5Sa7vX9KudT8NaJYxukci/2ezGQjaNkJBFcFFe+HLF5ZbNLz99GqTISB8inIjXJxj1r0LxFcRf8I9ps3mi2WRrNoySfl3REhciuqN7M76caHvKD0OG/4QfU36XMDccc5z9KwNT0ufSLpradlLqA2U6EHmu801rqCaOWTzPKAyz7soRjO7Ga5nxZdWt7qXnWsiyxmJFZl6ZHUVEWnsc+Ko0qdO8CjYaLcX8YmFxHF8w2LISGbBzla6XVfCt/qE1vc28sLbbWKOTcRkui4rG0uaAWLpLcpE6y5TzGIbGP4a6XTb+PTZIhfXcaxTxl4y7fe9x7UcutzSjSoyp6nLaHcCw1VYZmxCzNFKCA6h+gbB9DV+40u4/thLu8ZLhJZfM5ULGy9FUqOB9Kxnki/tW4cMhjNwzhv4dpfO4Gur1zVdFs4tPutLm824IDzwljLGrJjDMD3603HW6Iw0YSTUnszn2s7aPW7xVke3MVyPKEbiParxbwF9gai1m2XcbnzWkkZ4E3Eo24Eck7RWXqN3Bf3c99cTyiechnxGAuQMcAVLpUNzLK0tiXkNsplfz0AiAQZ5LHGarmgjtcab00Oomsr1P7Ni02VrZZEbI8wqGYY5JP8qjuYL14NWsNU2TXFlaC7tpshnXJzgOO1TaH4gl1a9tIrw2ttDDuUzOoWNyoz8wPf0q9qTafPrGpLYyiaKTRpIyyncC65OAazqW5bowrU4WbRzeuoJbzSv8Apvp9qc9MnGK1LDSIUt7+0+1A/bliTftIEciHNZmrH9x4amPU2Sp+KNit2wQsGKyRlyQ6BHDNtYc5ApU0nFXObD04TnLnOb1XSJ9JmgjmcuJNrq3Yru2nIq/rc9zLdW2khkgsEjiMUcQ2qxZQd8mOtO8TTCe201zIHmT7QjjcGKgMCOlVtZz/AGhpU/GJrO0Y+nAxzTlpNGFSMYTajsaMXgm6mjWSK7iMcmCpXP15qGTwmba6iS+1C3ji4MjNLh9n0Nb2ky3VsYQJleMPlgkiuqoefmx0rF8cNby6hDNDIkm+3j3GNgQNpIwcVfLzaHXWpUqcOeJqWgttQjazsNkOhWzlGIOx72ROS0rddg/WsnXfESBZNN0hwtsq+XPcRjaZcceXHjotM0gNN4d1yIHmMu4x/uhv6VypJO4+oNY0opybfQ5alV8qt1Ot0LSWhaC/eRmt7m3mjZY0LMBImOcVRutAuNOjhv1kZ447iP5QhDIN4wWqOwvdTWDSI7a8ngE/mxt5fzDcjHnaasatca7FYsl1fzSxSlsRuNuSvzZcDvW6g2mzv+r03Tutzb8RzXUWnxSwTSxgzxbzGxUMGXjOK5jyb/8A5/W/7+NXTakzXXh0S9R9ntpufVdua5j7T7CubDv3LHBUS5veZ63/AGDuJEjwbT/0yBNZiWq2F1eRFkbG3btwMA884rHvfiLOYyLaxWNmHDPJuYdugFO0u5ub6x+2OjeZNI7E8nocda2nCMke7CrFv3TSuJHlR47cDzTgD2z3rIW11A3EkMYG6La4Yk5bJ9elalpHOHeQL83HDcZFXFvtzAGBQTJ5Z243Y9awVGKOj2jZl3aSjaDbq7kAFjk9PcU7T1KmVngVG3bd2c7h+NX5JHDPsA9t4PP0otw80O+SFlfcRgjjA70Kkg9oxzyRpHKSBwjE457VjeFraz1C5vI50XehMg3AEkEnoDV+7VYLe+mkyMxFVHua4SPxHdaXeMbeJdynBIPX606cOWZlVqK3vHrD6PFHzGkW3IyAoBxXBWm1LjxTKPuh5FB9huqcfEeeS32PYnzgDl1fAI6cjFZ+nyMdH1u6YEGdpXyT0yKeIVloefXqwnG0RNNUfY/D64yZNRll/BQTVWS2sUk1DVb8s0JvZY4IF6yyAn7x9K0bBdqeHExwsNxO2T7dazdS/eafpUR/5eL+dzjqcviueLfPZHFpyakQ8Va0rbLN1t0OFjjgXAAHQYFR3et+Jr6Bre5kmkifqpibnHuBW7Z6HpkN9a+R5jSoHlO85VQF9Klv/ty6jFGjTRWf2J3LRIMGbPAyAa7Jz5I3OqnhqslaUjhRb3CEny5Bgcbkbn6cVu6XrOrafaS29tcvA27zI1xgNxg5zWyTqJkso4Z5333MYlDxhlEWPmzla1NU0aK9SwVlVXaV/uBVYgccGpp1PaK6QfUpU3eMtTLvfEfiSHSdLm+2OtxO7iVwBkqOgrn59W1TU2iN/P5iQtvYt1wewra8T20dlp+l26oymNpMFjnj1rklB2lu3fmtI3a1OLE1KlOfLcsW7CXU7GQDCm+tiPp5q13nxIikmufD0caF3ZbwKo7nMdcVpNndXd/Y+SmVju7d3boqhZFJJNeg+PtQaxOleTGpuJUulSUjJiUbM49zVOVovlLo60JuexxkdrZaMizXoWe+b5obUHKRn1kNQJFqmtXBmkYLEnLu5xDCg5wvapLTTHnxe6lI6RMwYA5M1weuFHWtW5ltbWGN7xRDboM2+nxEb5O4abFcrnrpqzKNPmV3ohIYbeGF1tW+z2vS4vpBiWb1WAGse/1YYFrp4aG2U5ds/vJmH8Tt1qC4u9R1edTs2QqNsUa5Eca9jxVj+xwUC+f+8x+GTWtOl1luack5K1JaDDrassZnsraSaNVCzMo3cdM1m3N3NeStLIeT2HQUtzYXlsTuXcndlqumDn6VvymFWVW3LNm7pEbTafr8UY3TPBHsQfeIBycCodAuo7HUoZZvlKllBcA7HPAJBrNhuLi1kSa3dkkU5BX+RrdYWmt2txcrGIL+1jDzFB+7mX1wO9c79x3Yqb2a3Rr20mr6bcX15qGqPc2lxG6mKXJDsxyCA3A/CuRnYTTSvGpwWJUDJ/lWp4glfdpkRJ2rZRMFycZI5NaNlNJpukCSy02K51CdlbfcLkJCQfmVT1pwldXOqcpYuahskcr8yN1IYfUGnNJNJgPIx9ASTXQ6o8N3p9vdXFoltfn/AFkceAM+oA9ayLDT7m+k+QBIV5lmfhEA681bkkrs4qtGVOfIncvIdugxE8hNRDY9eK17i41fUJ7C60zU/ItIIoQYVBCQFfv7lHBzUJtrRrL7Kh8vT4ZBJLdSfemkHURD3p/7mOGNSj21ieIbWPi5u29Xxzg1yqokdlCcqLLEhiu7jWLuLaITYPbea3yLNLjOVzWHrqMtvoZII/0JVOeOlaV3eQWarLfhN6Lmz06L7kfo0uO9cxe6heahJ5tw+cZEaDhEX0UVdOLlPnIr1Iyi+5VPRgPSvV/E9rNeeFNBghA8xm0w88DAgJNeTHOG+hr2u7e2j0Twy1yQIM6eJMkDI+znjJrrtozTBRTUkzn1kjAgsgQZhbgPg5UYXaeRXE2OmtezXieeY9lzcQ7QgIwnKkE11Wv32k6FfwXmkiG4Nzbv5kTSbkiJOAev6V5/JczGa4lFwY2mlaVhGWADOcnGKypwjTPQdOklY2ZtKe2mhQymRWnijIKAFlcZbGPStnWdKub+XTbaxiH7m32gMcDbngBjXJ2d/dwTrN5/nbGVisxLLxx3r0jwxqsGs3G6SKK3eFAZd8mEaMHrGD3zVSs3oDo05R5Tzq4tbi2uXtZcLNGwRwDwp9KvHQtUiWKedAsDMgZw2eCRV7xRF5XiG8cxkQTSh4jjCsCByDXWXv8AwjkWjw38t08ksaRr5KzDDPgdIx6dc0M4qOGg5ST6HBa5ptvZ3ljFC7kXYB/eckEtg8itqaxuJdNS2jkt4bWPBkWKJleRgcZck/nWDr2rQatLaTRqIBbqVUDhieDkkVnDUrwYRruUx55Uu2G5p+49Wd3s6a2Orm8P2/8AZVtc2Rc3BkRWGSFkDEjODVi1sE8Pxm91WVjNcRSRQW0TA8EYyxpNP8Tx3cEGmiyCSu8Mays4EQAIGD9a0PGtqqQ6UkZV58MHiifzAhOPlB60mlIxrUIpOpHc57UiJdG0KUZG17iMc9Pmz1rQ8OaNq32gXJQfZpreZNwbn51wCQKZc6XfDQtMtGQfazdGSOEH95sfvj+db+hxanY7lMeQiKr5bhiB2rKFpLlOejQ5ql59ji9S0TV9PRpbuMrEXZFbdkE9an1tWNp4cl/v2Xl5H+ya7LxVLFd6E0gBykyEg8FD05rjr/8AeaBoEv8AzzlmiJ/GqlpKJlWoqm5RRoaBpGsAaiCrBbqwZYm3fxHlelYeoaVq+nqjX0ToshIQsc5x15rtfDlxcwxM7xymAxKwKIXJ4x+VS+MBa3Gk2UrySbVnbkKCw3L0Iq4LW/c6KuFj7HmXQ5/wl+8ttctzyHi3Y+qla5NgAXUdmYYPscV1fhEJ9rvVi81ka32szLhc54HFc1dQvHeXcO1twuJUC4+YnccDFZUnacjhmm6cTa8OaVeatBGLWWGOSyunYmU4HzAEdK6Wfwjqd1aXYu5rfMKSSq6vyzhTxWHonhTXbiG+KXElkywG5jyGDO2PuALzTNH0HxlcW94dlyIGcq5mmYPleu1SenrWsZM9umr09UWNA1exurNNIvsK6o0GXOElTpgH1rR/4RLRP70//f0VwLxNBLKj9Y5GU+oINWftt1/z8T/9/GrF0Gm+R2PGlWje0lc9Wm8IWLByLeAYB4ORnHNLZwwW1ukKAIqkjavQc1ytz8RdVvP3ENpHbiVljJUlnw3BwTXVxRHy4BzzGrNnuSOaqcOZaHv0qkHrEkJXHDY+lReXEGLj7x/i71Z8hcgYOCKa1tkgBulZexfc39ouxlzR6gS3lykf3elW7X7UkaiaYs/8RqyLZuoY4prW8uM5xzT9k+4e0XYoa26Jp1yzEt8vSqGg+HtG1iCSdo1aRMB93XJHpVrWW8m0RiwLFujDKtjnGK4a08TX2l3kslquAzfOoJCt+FOnG0mpGNapHRs9Ck8KaXCCotogWBAIGcZ71iahZxWGkX9tG25VD5JwCSTzUc/xCuZ4QEsgk2wqJC2QGI6gYqG+mkuNDhkkctJcNHuY9SWaoxCtax51epCStEdGPLex9INIkb6ZFZN7NHBD4ZklUlY8zsvqN2a2JgFe+IP+q0pE9vmFYesxl30G2BwTbRJn0LkDNY0taiOSei0O2uLqw1Szs77Sw1tdMuyQFABsHBz61y9z4q1qynmtRFFIIW27yME+9bqaroOgy6ZojxzySske91TKqX7k1zPi2zhttTkeJvluFEhA9TXXaXNrsehVnUp0+YcfG+sKM/ZISc4/+vUVv4q1Se9tLi/jD2trJv8AKj4ypOSM1gBQc5PPYU7GF4LAnOR2P4VslY4Hjah03ifxFb6/JA0MRiigQoivjcc85OKyNIsBqE7rJJshhQyykcnaOwrP/HNdB4eH7rWHx/y6kA1FV8sW0YRm69VOSHDUg11YWWmoYbRbu38wqP3koWQElj6V6dqNt4V1a5tGvbiCSe0DmFBOBgPgksoPtXBWdnFZrBFbBftdxB5808gz5UZ67RWXfavHCJbbTydzZE9y3MkjdDg1jTqfZijsjU9jF8+tz0N4PAkc5eXUbbzl+VRJeqfL/wB1ScCs6fSfhhLM01zqsTysckyan+mN1ecW8AkEsr87AW55y3Xk1gzSZkdiBnca6oqKex0UKirK7joe3xWPw4K7IdRtSMYwl+uf508aP4DzkXqfhff/AF68LjmUMCDtb1FaB1O+KhVbgDAI4rU7NF0PY5NP+HyIVm1C3Cng778f1NZx0H4UMc/2jb5P93Usf1ryF52JJlO7PPPNReeC4xgDtwKWhElGW6PY/wDhH/hUOP7Rh/HUv/r1esdG+HsUd6LO9jdJI9twRfb8J9c8V5M8CGzt51A3EfOcda3PDePsmtnj/UAVhUmlG9ji5oxqcvIj0K40DwJcywyTzKzQQLtH2whfKXoSAelNlg8ASqitq0CqgCosd8qBQOwwa5w/62T/ALBIFZFho9tCsF1dp5ss3zWtso4Y9i1YRrRtewnUtLSCO2l8O+AJUWaW8ZozgKzX7bT7Dmrb6R4JEdvbG4jSMYMcK3RUSY/vKDk1yjLIJFyqT3gHyRjH2e0X1PbIrNvdQhsmkWBxcX7jEtw2CI8/woKFVc3blCdaFPVxR6A2l+DZJ4w1zG0kK/u4vtWUT3EecVAbbwFFcSyPqVv9pI27pL4F4x6Jk8VwtrPN/Y13MHPny3IjeU/fwxx1q/MvhbSLexjnspLy4uYxJPKF3bATjg+taRad7pF0p+1+GKNqTQ/hhNI8kupo8jnLM2pkk/rTP+Ee+FY/5iMX/gy/+vXF65YWdrMklqNsUw3op7Z56Vp6LY6DbaVPq+owNdSCURRQIM85xk1tzJLYzjLmqunyK50kfhr4YTMEivUdm4CpqBYn8Aas+LRotxo1rpcepW0Rt5rbYrSq7hIkKDIzmsdrrSV0yfUbC1jtyI3VQ0YV1k6YBrmrPTZbstfai7JATuLN9+U9dqis5VGlqVWl7P8AdqKux/8Awj1tIvGpwupHUKSPzph8LxcY1C3/ABRq3WnjtYVeR0s7VQFhiVFaV/8AaYGoxrWmHH+nv/35X/CuTnqPVGEfZrRmL/wi8Qz/AMTC3/75apl0HYqbNUhUr/dDD+VbB1KzOGF3Nz/07Dn36U06nZjj7XN/4C//AFqn2lTuXy0x9vFOIlivLuxvEjP7tp1YuntmnyQWIyPJ0vn13459qh/tOzyP9Ml/G1/+tT/7Ssm+X7U2cdfsv/1qzvLqaKaWxAbOw5za6QQT6PR9g00kf6HpAA93qX+0LHABvT6/8eo/wo/tGxYgC8/O1/8ArUrSFzoWO0sYydtrpS5weGYVYARGEka6aso+47O7bT64NQm+s1Ow3a5IyP8ARh/hSf2jYKDm9iOP+nX/AOtR7xSqIZqOqwachMDm71KZcST4JWPthPauWGqaxkt9ouMkk8FwOfausGp6YeftkHHra/8A1qX+1NNwT9rtwO2bX/61dMK3LtEwqR53fmsZOmwazqsbNeXMkemoQZmlJAfHZc10T2mnT2sEUsaw6RasrxowAluHHcZ5wapHVNJ277i8M8cI3R28URRC3YsBWfbz6rr+p207K0dnauCigYRQvIH1qr83vSdhxlCGm9ze1Gz8VNCrWBhsrUITDAHCTMhHVlFc7b2fibVZDZ3byi3icGVpc9f9n1NaepWkk2rLqc+rSxNGy7kV8qVQY2hc9PWoX8Q3Ux/s/SIWklcsonbJY5P3vYVs78umhrWjT/m+RpTXmn+HYIrHT4lm1CTAjiQbiGPG+QioLHTBaztqGoqLnWLpjJHABlY2b+JvpUun6WNOdWyLrV5/mmkkOVgB6nNR6tq8GkLJDbOJ9TnB82ZudmfT+grKMeb3Y7Cdornn06FqSaWC72Le3b30se+eKydQkadMAVKG1VY/LB1pY5CWA3L83bg1xOj30tvqQk3GSWVHMhY9cfMQDXV2/idb1Fk+zXGIZChG/wB/atfZa2TN8PL2sOZlOXw9phkczWuoiRjufLJnJ55pv/CN6N/z7aj/AN9JWf4g12e5v2NuslssaqhXcTvOPvGsv+09Q/5+pfzNDoVP5jgq1qdObi4nomoeHbDT4zdNaRFFIzsPQ461wl14o1GG5mjW6cIhKxqFBwvYZr1rxP8A8ge6+qV4Pc/8fkv+9/jUTVnY9t6Wsah8aa0OBcPjp90Uf8JnrPTz39Pu1jP1oHSo6Bc2x421lRgTPx6qKRvG2sOCDM3PoorEbvTB1FOwXZ0ln4gudSmigvJt0a/dDDGM+td/p/hXSrqCOcQROGGQx5zmvI7b/XD8a928I/8AIDsvo3862hFMlO71Oe8QaFaWOl3c0VrEhRQFZQMjJx1rDvUP9m6LCP4pYcj6EGu78Y/8gC//AO2f/oQridQ/1Ph//rrF/KuavpJI48WkguBu/trt+6giH5dKxdbjnkv7WKFWZ4raIqF6jFb033dV/wCu0H9KhT/kYj/15r/Ks6GszjlHmsje0q1+1/Y5Z41e4jij3FlBYHHrUeqWNnLeT+bEGIwMt1rX0L/X3H+6tU9R/wCPy6/3v6Vjjm409GfQYSCfuvUraZ4e0y5aRzaxlUIByM9a5LxRpaWurSwWNu2zYrFUBPJHOBXpvh7/AFN3/wBdR/KsbUP+Q7L/ALp/kK6sL/DizmxdCE7xtY8rkhliYrIjI3cMMVu6CCtlrBz/AMs1UfjTfEn/AB/t/uipdD/48NX/AO2f863rfAfPxj7Ovyo2TxNKf7mlgfTiuCJ+Zj6sT+tegN/rb3/sGL/I1wDdW+prLDdTTFPRGrayFNNvNkYZijBmPO0etcS8ilmznO412tr/AMg6/wD9xv5Vwj/eb/eNdMN2elg/4SHZycg1IssgAAY1AKd/FWp2EjMedxyfeo93OaG6mo6BWOvtyj6TBjn5Wz9RWp4dVvsmtn1hUVkab/yB0/3nrd8N/wDHnrX/AFzX+Vclb4WefVf702uRK5I4/ssD9KfCT5umkfw2MmPbinN1b/sHf0oh/wBZp/8A14yVwkLcy9TuJrbSrbyTta6kfznH3m5PU1y/BJ6/Wul1z/kFaX/10f8ArXNp1/CvQw692552Lvzm7AMeHbz2uFP61Ut9cvIkSJhHIF4QyLkirtv/AMi3f/8AXYfzFY2n/wDH3B/10FFPr6lpyTjyu10T3R1G9myIppOm0ojbRnsK2tOEulQ7bu8jhE/zG3cBh9SK7Ow/1R/3BXn3ib/kKSf7i0m3J2N6lP2DVRO7Nlp7GcrmU3Kocx28KEIzds4qO8u47SSNrna902BbWy/chB6Fq0NE/wCPK3+g/pXO67/yHl+tv/Os1DmeptUuoqV9xbrTNXmuYJr10cSlTtU8BfTFR32nRR6vaQ25WNDAJ33DKhgfSuquf+P2x+kf8qxNZ/5Dif8AXl/7NXTBX0OyOHpxT0Jbq51a0tvtCyWkiJsXb5eOpxjNbki3C6WL2OCKRlEe8YAGX7VzV7/x4Sf9fEP8xXcRf8gCb/eh/pRKhDsUqcWtjnbq51a1SF302J1lGV8vDY+uBTILzVLhZHXTIlVOvmYU8egIrph/x7/8BWqk3+rk/wBxq43CKly2M/Ypztcwp9QmWzmmWCFJAG2rtDDcPWsqPUNdlOF+wjDqozH/AHhmtZv+QdJ/10f+VY9v95f+vhP/AEGuunQhJbGjpx7GpoNzqF9dXEV5HbYibZ8iAEnPWr0rX4e8EOnQSR2zMGOQGIHOQuKj8Jf8hG7/AOu9dGv/ACEdS/661E6MNSnSi0jkYdXuppBDFobNJk/wcEevSn3uoahZLvudDCJ1z8px9cCuz0n/AI/Zf9x/51ma9/x53v8AwKsqdOElexzSo/u3K5x3/CT2xznTYunQbf8ACteK71y4s2l0/SWVCpIfAUZ9R0rhB/rB/vD/ANCr2+z/AOQLpf8A1wT+VaunGL2OXCRdVtSZ5GNL16+uxHLFKHkf53f7i812On6WunhLHTo/OvXx9quAAfKXuc/yrXTpP9ZP50/wr/x7a5/19H/0Gk/fbudVHDxjI5rX9UbR4ms7aOQTS5Dzup5J6ndXDCWRjLIzFnbks3JJNeg+N/8Ajwh/66D+tedL91vwrphFRVkcGNb57EtrL5N3aP8A9NNpPs3Fb2lrqEbXsUVtKyvMXVlQkADnOa5wf622/wCu0f8AOvYdE/49x/u0nJqWh2Zf70Hc801+1uYZYbmRHCz92UgbgOnNZG8+lek+Pv8AkE2H/XwP5GuJi/1UX+4n8hT52Y4igp1Wf//Z” alt=”” class=”wp-image-136″ >
Types of PCB Via Holes
There are several types of PCB via holes, each with its own characteristics and applications. The four main types of vias are:
Through Hole Vias
Through hole vias are the most common type of via and are used to connect all layers of a PCB. They are drilled through the entire thickness of the board and are typically plated with a conductive material, such as copper, to create an electrical connection between the layers.
Blind Vias
Blind vias are used to connect an Outer Layer of a PCB to one or more inner layers, but do not extend through the entire thickness of the board. They are typically used in high-density PCB Design s where space is limited.
Buried Vias
Buried vias are used to connect two or more inner layers of a PCB without extending to either of the outer layers. They are typically used in complex, multi-layer PCB designs where a high degree of interconnectivity is required between the inner layers.
Microvia
Microvias are small, laser-drilled vias that are used to connect adjacent layers in a PCB. They have a diameter of less than 150 microns and are typically used in high-density, high-frequency PCB designs.
Functions of PCB Via Holes
PCB via holes serve several important functions in the design and operation of electronic devices. These functions include:
Electrical Connectivity
The primary function of PCB via holes is to provide electrical connectivity between different layers of a multi-layer PCB. By creating a conductive path through the board, vias allow signals and power to be routed between components on different layers, enabling the creation of complex circuitry in a compact space.
Heat Dissipation
PCB via holes can also be used to aid in the dissipation of heat generated by electronic components. By creating a thermal path through the board, vias can help to transfer heat away from components and into the surrounding environment, improving the overall thermal performance of the device.
Impedance Control
In high-frequency PCB designs, via holes can be used to control the impedance of the signal paths. By carefully selecting the size, spacing, and placement of vias, designers can optimize the impedance of the signal paths to minimize reflections and improve signal integrity.
PCB Via Hole Design Considerations
When designing PCB via holes, there are several important factors to consider to ensure optimal performance and manufacturability. These factors include:
Via Size
The size of a via hole is determined by its diameter and the thickness of the PCB. Smaller vias allow for higher density PCB designs, but can be more challenging to manufacture and may have higher electrical resistance. Larger vias are easier to manufacture and have lower electrical resistance, but may take up more space on the board.
Via Placement
The placement of via holes on a PCB is critical to ensuring proper electrical connectivity and signal integrity. Vias should be placed as close as possible to the components they are connecting to minimize the length of the signal path and reduce the risk of signal degradation.
Via Spacing
The spacing between via holes is also an important consideration in PCB design. Vias that are too closely spaced may interfere with each other electrically or thermally, while vias that are too far apart may result in longer signal paths and increased resistance.
Via Aspect Ratio
The aspect ratio of a via hole refers to the ratio of its depth to its diameter. High aspect ratio vias are more challenging to manufacture and may require specialized drilling and plating techniques. Low aspect ratio vias are easier to manufacture but may take up more space on the board.
Via Filling
In some PCB designs, via holes may be filled with a non-conductive material to improve the structural integrity of the board or to prevent the ingress of contaminants. Via filling can also be used to create a smooth surface for the application of solder mask or other coatings.
Manufacturing Process of PCB Via Holes
The manufacturing process for PCB via holes typically involves three main steps: drilling, plating, and filling.
Drilling
Via holes are typically drilled using a computer-controlled drill machine. The drill bit used depends on the size and type of via being drilled, with smaller vias requiring smaller drill bits and more precise control.
Plating
After drilling, the via holes are plated with a conductive material, typically copper, to create an electrical connection between the layers of the PCB. The plating process involves applying a thin layer of copper to the walls of the via hole using an electroplating process.
Filling
In some cases, via holes may be filled with a non-conductive material, such as epoxy or resin, to improve the structural integrity of the board or to create a smooth surface for the application of solder mask or other coatings. The filling process typically involves injecting the filling material into the via hole using a specialized machine.
Advantages and Disadvantages of PCB Via Holes
PCB via holes offer several advantages in the design and manufacture of electronic devices, but also have some disadvantages that must be considered.
Advantages:
– Enable the creation of complex, multi-layer PCBs
– Allow for higher density component placement
– Provide electrical connectivity between layers
– Aid in heat dissipation and thermal management
– Enable impedance control in high-frequency designs
Disadvantages:
– Add complexity and cost to the PCB manufacturing process
– May require specialized drilling and plating equipment
– Can be challenging to manufacture, particularly for high aspect ratio vias
– May take up valuable space on the PCB, particularly for larger vias
Frequently Asked Questions (FAQ)
What is the difference between a through hole via and a blind via?
A through hole via extends through the entire thickness of the PCB, connecting all layers, while a blind via connects an outer layer to one or more inner layers, but does not extend through the entire board.
What is a microvia?
A microvia is a small, laser-drilled via with a diameter of less than 150 microns, typically used to connect adjacent layers in high-density PCB designs.
How does via size affect PCB design?
Smaller vias allow for higher density PCB designs but can be more challenging to manufacture and may have higher electrical resistance. Larger vias are easier to manufacture and have lower electrical resistance but may take up more space on the board.
What is via filling, and why is it used?
Via filling is the process of filling a via hole with a non-conductive material, such as epoxy or resin, to improve the structural integrity of the board or to create a smooth surface for the application of solder mask or other coatings.
What are the main steps in the manufacturing process for PCB via holes?
The main steps in the manufacturing process for PCB via holes are drilling, plating, and filling (if required). Drilling creates the hole, plating applies a conductive material to the walls of the hole to create an electrical connection, and filling involves injecting a non-conductive material into the hole for structural or surface finish purposes.
Conclusion
PCB via holes are essential components in the design and manufacture of multi-layer printed circuit boards. They provide electrical connectivity between layers, aid in heat dissipation and thermal management, and enable the creation of complex circuitry in a compact space. Understanding the different types of vias, their functions, and the design considerations involved in their use is critical for engineers and PCB designers looking to create high-performance, reliable electronic devices.
No responses yet