What is the finished hole size?

Factors Influencing Finished Hole Size

Several factors can impact the finished hole size during the machining process. Understanding these factors is crucial for achieving the desired hole size consistently.

Material Properties

The properties of the material being drilled or machined play a significant role in determining the finished hole size. Different materials have varying degrees of hardness, elasticity, and machinability, which can affect the cutting tool’s performance and the resulting hole size. For example, softer materials like aluminum may experience more elastic deformation during drilling, leading to slightly smaller hole sizes compared to harder materials like steel.

Cutting Tool Characteristics

The characteristics of the cutting tool, such as its geometry, coating, and wear condition, can influence the finished hole size. The cutting tool’s diameter, flute design, and point angle all contribute to how effectively it removes material and maintains hole size. As the cutting tool wears over time, it may produce slightly larger or inconsistent hole sizes, requiring periodic tool replacement or resharpening.

Machine Tool Rigidity and Accuracy

The rigidity and accuracy of the machine tool, such as a drill press or milling machine, can impact the finished hole size. A machine with insufficient rigidity may experience vibrations or deflections during the machining process, resulting in hole size variations. Similarly, a machine with poor accuracy or worn spindle bearings may produce holes that deviate from the intended size.

Cutting Parameters

The cutting parameters, including spindle speed, feed rate, and depth of cut, can affect the finished hole size. Incorrect spindle speeds or feed rates can cause the cutting tool to deflect, chatter, or wear prematurely, leading to hole size inconsistencies. Excessive depths of cut can also cause the cutting tool to wander or deflect, resulting in enlarged or tapered holes.

Coolant and Lubrication

Proper coolant and lubrication are essential for achieving consistent finished hole sizes. Coolant helps to remove heat and chips from the cutting zone, reducing tool wear and maintaining hole size accuracy. Inadequate lubrication can lead to built-up edge formation on the cutting tool, causing hole size variations and poor Surface Finish.

Request PCB Manufacturing & Assembly Quote Now

Methods for Achieving Precise Finished Hole Sizes

To achieve precise finished hole sizes, various methods and techniques can be employed depending on the specific requirements and tolerances of the application.

Drilling

Drilling is the most common method for creating holes in various materials. By selecting the appropriate drill bit size and maintaining proper cutting parameters, holes with relatively close tolerances can be achieved. However, drilling alone may not always produce the exact finished hole size required, especially in cases where high precision is necessary.

Reaming

Reaming is a secondary operation performed after drilling to improve hole size accuracy, roundness, and surface finish. Reamers are cutting tools with multiple cutting edges that remove a small amount of material from the hole’s surface, resulting in a more precise and consistent finished hole size. Reaming is typically used when hole tolerances of +/- 0.001 inches or better are required.

Boring

Boring is another method for achieving precise finished hole sizes, particularly for larger diameter holes or when high accuracy is demanded. Boring involves using a single-point cutting tool mounted on a boring bar, which is rotated and fed into the hole. Boring allows for fine adjustments to the hole size and can achieve tolerances as tight as +/- 0.0005 inches or better.

Honing

Honing is a finishing process that improves the surface finish and dimensional accuracy of a hole. Honing involves using abrasive stones or tools to remove minute amounts of material from the hole’s surface, resulting in a smooth and precise finished hole size. Honing is often used in applications where a high-quality surface finish and tight tolerances are critical, such as in hydraulic cylinders or engine cylinder bores.

BOMetJC4aGdbYGGQbWkZpfvR/3QxxiiwE0sjz20bXbGJo2KwfuzmRTy3y+3rTvOlgtoUtCZYnZnkk8snEvTbjtUDtstk+05mLOfI2y58sAfNlhnr6UrM728DWzeTEGZXRpQpMmfvbjjNFgJLry5WhluZTFPIi+cgjLbQOA3B4yO1Stc3sUsEdum6KNUW3Owt5iY+9ketVrh4kMK3CGWZUUyyLJgMp5AzjnHrT5BdNNCYZhHG6oYFMoTy0xwCuf6UrAL5dn9rObg/6zcV2H/WZzs39OvGcVKtxfSzTpOmyKRXWc7CPLTH3sn0qv5tn9r/1DE+ZtzvOPMzjdsx684zTkF0s0xmmDogczKJQxkQDlQoNFgC2McTTSQSmWZEbykMZXcDwTz6elKJJriCZbg+XGjCRX2EfP024qO2eJnk8iNkl2MYnaTcqfXIoUyLFO1yxkiyAEEgY+YTw2RnFOwhUdobeQ2zeazuBN8h/dqBxx70kzGWGB7ljHINyoNhO+PrnFNVt9vJ9nzEVkBmLSY8wEcAMcdPSklIWGAT5lclijLJkKn93cM0iiR5JYo7dLfLxY3B9hJLk8jFMn8t5Q0rlHcKZVC52nFJIXZLdoW8uIqQEMm0hgeTk9c02Z41kUSIXdQnmMGwHOOtFhExmuBMAFyowqjHVPXNMVIhN8soOCSoIIJI5AzTT53nDEgGSCvzdF64201HiMuQhBJO3nhW9cVViSZZZXMyuNqsDubBG0imJ8iu0bbmHBAU8D15pgeQCQyPuTGGAbOT2IpoIMbbPlIIyS3UegNFhEztujjMpKsMhQF6r6kUpaSONBBlkblm25O70xULMAkYf5yclSG6D0zQ5LLGUYIuMbS2Oe5osBLMyv5bTMyy7QGAXPyjoaeZrmMwrBlo1C+Udud3rmq0jgCMOu9gM7tx5HpkUrlmaMpIEUhdil8bKdguTOLUz/ADyMu5gZAFyAx5I3Z/pUy3F+0zrIpEbBlk+XAWPGMhqqNLCJhuiyQwDHJG5vXbSp5wmJMytjcWAfJZepXbSsMlt/JSRngkd5kVjArJtDHGPWnia4lhnS7LJBkNv8vBEoPAA75qtFJEzOI4/Ldlby33k7OPehCyRztKwljwAYxJnLE8NntiiwyeFzFDM1ozvKxCygx8pH6gc0TO0sETXjNHIpKw4j5dDycrx0qBGDwSrFiFlZTIxkOHXsu40OwSCMTYmLOxjIkJEYHUbh6+lFhlgy3EUMCWZZ4SS7P5eW83PKkc4xTLkwySRvcyPHO6IZ1WPcFPr1FROS8UDQssMfK+W0hX5weWyeuaSeSJGiWWPzZFRfMk3sBIOoxiiwFxrjUkmhSBCYkVVg+TIaLHBLe9QItiLv5ZnOJNyLs+UyZyF356Z74pridriMpcKgbY0YMm0xqRwu32pqy2xuuLfBLlVO45D9N+3p70WAsrcX8j3CXKssDqwuCY9uwAdQahtmjjMz2rvJcqhEStHjKnhmAycnHamRCVJJmkmWRFVzKgk3GUemKbC8bCdYUEUhQkSbyQqjkqSemfWmImMk0ttILwukauGhby8MZD1XHFXLSw1FtNnvrPall5whubu72xRCXGVijzkse5wD+FZqnZBKZmEyMyqqCQna3XcSOldfJKNe8G+HtK0hc6lpF7cC60+NsT3CSiRxPCvV8Z+bGSMnjAzUTly2sNHO6pZXtotk+qAxvPFvtZIQksFzbcESRyIdvf1+oFRK92zWNtYkNG7RpCzhQGlkbb87NwOT3NdzHqOkWUXw00DUZLaW60+/ml1VpWjkgs0neRTbTO2Uz8w3jtt5pb6Oxhs9FjRtMSePxxNJIkc9mzLpzzSFd5U/6sg9Dxg1mqr6orlOE1G1S1v57e8mCXEcm26WHbKiScZ2yIdpFPR9VmuHWKJmRI3kfamUW1QfNIz+gHfNd1dTaTAPiDJBHpbTLrWlSaXn7E5aJpU8xrVWyMAYzgYqxNcWNtrXxKg0+806FbzSrSTTVjltBFJKETzBEXOzrnIz+FHtn2/rQXKeetp7Wa6deeYjR3qTTaeFeJmcxNsIlVGLLz0yBn+UStcSwXD3EiLCX2yLtxIrAbgwGMYzx1rvbH/hGZW+HhvP7Njlew1hJpGNuRFfNg2zXoT813CuR1iTUPPjTU100z2dmtrN/Z0sMjXYRiFmuGgZlLHI54OAOKqNRt2BxtqZULeWk7W7M8xABBTGI88kDmo/NvPRv+/f/wBaljIeOdYgImAVmcucFc/dyai2v/z0T/v5WxNhg6OQecdPUUZG3BGOcg/0pBghux4xRkhDnkZ/I1JQ7nYCDkEnI9DQSpCZ4IGPYj1pvBUbTg5OQe/0pWPCBhk44PtnpTAlDsHU4BBAw23nH1pY/LEgIc5ByMrjJ9M1Ec5Uq2AQOCcEGhmXfyvIIDYPU+uKBWPQNb074eaFqEum3Np4ilmFvBNJJb3FmIwJkEnG5AeK528Hha48iLw3Z679vaQ5S+aCcSx7Gyscduu7Pf6A12PjPUfCdvr00Wo+Hri+ulsbJpLiPVZrZXQwgqvkopHHTrXF3WqaP9osrjw7p11ot1B5pM66jNcOxcBRtZlUrgbgcdd1YU22k9SmrHbv4L0D+1tP8OLp+t73SCa+1nlbVsRGd40UJ5Y3Y2jngnvjnkdWs7R7/wCw+HtF1eGUb0ltbxZJ7mYBvkmWLbuAIr0U6nrH/CzbXTvt91/Z7WiM1p5z+QWOntJkx529eelZGk3G/wAMa7q954gudNvr7XDps+rSRT3tyttAgeO2jMZDqDk8g/8A1sozkrN9htI88vbHULIRQ6naXNlNyYkuLd4jIh6kKwH51NbaZrd5brJpum3t5bx7jJLBaSzKrjkrlVI4rrNS1Hw4fC+qaZc+KJddvPNgudHaeyu4praVWCyKJpt3BGeCw/XhfGeq6xompaPpWkXk1hYaVp1g1tFbymFJZHUu0sgXAbPQ5z39edlUk9Lak2Ri6T4bm1mz8QX0i3qSaZYh44YLZmE11kr5QOOq8FlAzz2qvJbxtZ6V9j0/VZNVe5uIZWa232k0Uedotyq7y4A+f0wfSuw0/wAQ61eWvxHvpEk06caRa3qRWjTwRrcNmM3MQc5DMAuWHXFUv7SudP8ADHw+1RJGL2/iLUrptzYLp5js6t9QWB+vvU88r/12HZHEpCjXgiQzNMZtqRCJjI02cCPjnOeOlWbW01m7u57KPTrl7ghxPDBav58Q75VV3D8a9Fi0ays/HWqa4yD+yrXTH8UxSZIRmuEIAA6Z3b2H0FQWU0I8Jpqd1r8mjXGva1qFxqN5Bbz3M1wVaRRbK8BDqoAz1/nT9tfZC5Tz2SzvNNlniuLe5huxHxb3ds8LFCeW2Sdam0uyuNYurLS8pA15dxQwyGPCh2PJZVxkAZP/AOuuo1rU/D9z4aOnL4jk1nVbW8SfTri4s7qCeK3faksLTT5yMZPLenpxy2jQ6zNfWiaWsk+orKLiySGRN6SwAylwXO3gA8d60Um4t7Ca1OjuF+HGlT3WltZa7ei2uHtb69SeJGSeI7GaK3YbcZzjPp3qK/0PRrLWrC1u5r/UNMubJryz/saJGvZIJEZk3xgbQykfNxyOcDoLLeLPDWq+cfEvheL7XvEd1eaXMba4Z1+UsyErlh7ua19D0bT9I8YeG5dOuJbnT9V0q/v7CSfAmjia3bMcmAM44wcDr7c48zitb7F7s4JbPV5Y7drHTru6tQD5U0dlLMHIYhhuVSODxjNR3lnPBcQm+hvLaS4wdktrKhLDAIjLgZ6joD1rpfCaa/eM7LreoaX4Y0tXn1F4LqWGOJdzOYo9pxvc8/jnqQG39H1yLxR4uvr64UxWugaPfXGkLMpn8gq0afaHj5LPg7jz2HcZq5VGm9NiUrnC3Nh4ktHW5udIvILd2CLNPZyRoVPAPmso5x3zWdH5CTOYpGeRd3kgrgM3oTmvRtL1bQrS+nn1Lx9PqtleRTR3thd6dfeVOkiEDaHZlUjjovtXm5e1+0zC3Q7DJKtu5ZshckK5U+1XCTejQmuxd0+x1rUvtUNvYXk6quZfslqzujZyBiMUtjp13JejTkhuReyTQ288MlrJ5kETuqtI0J5+XOTXT6tfX2ieGPBVpp081tDfWNxqd/JaSmOa6uXdMBpUIbC59fT0q7cX9/c6d8NNe82WHV7q8fS7q7R9kt3aRXSxgSOuM5xz65PrUc73HZGP4w0/QNKY6Za2Op28tpcKovrtsw3w8oGTyogoHBK8g/zqpY6BLdeGdY1eBbuV7Se2S2hS1Z1nMkipI44JwoznHfqeMVL48vLuXxDrUN1PNPBbXhjsonlYpbBoo2YID0zxx7Vf0bU9Si8A+Kza3d1B9kvtOittk7r5KTSqZFjbPAbJ3D396V5KCfXQNLmfqXh2SSw8H3GnW9/c32q6dPc3cNvC04UROqho0jXIHPOawbyG/srgW09rNDLEqAR3MLJLg85YOM12OvazquneFPh7aWd1Pbrc6fPNcSWszRSSCJ1VEMifNgZJxn+Vb1mia7f/AAju9SHnzSadq00zS4LTvZhWi8zPXB+b/wDXSVRxV35j5bnnE2jazFGL6bTdSjsziQ3D2k6wgHnPmEYx71QDyGRtygZzu4xgeua9Kt9b0i21ptQu/iBdXCGeRbywl0vUPsssRLK0AiJMYAzgfL/9fzzUzYf2rqrac+7TzeXL2fUZty5KKFYA9OOlawk5OzRLVjTvtJsbXw14a1iB5zd6pcajDOrspi228hRdi4yD68ml8L6VZ63d6jbXpmVLXSb+/jNuyoTLAE2hsqeOTmt9r/SLLwP4KbUNFh1NJbvWREk1zPbiEidiSDDyc+/pVjwlqugXl1rcNh4bttNmGgao5uIr26nYoFUGPZN8vORz7Vm5y5X8yuVXOCs7TUr/ABBp1pc3cuN7x20DzOox1KoDgVMljcDUtO0/Ure5tZpbu1t5YpY2hlEcsqoSFccdTg4rpXu7vRfAPh1tLlktZtb1C/fULm3YxzOLdmjSLzV+YDAHfsfU5urPcav4Y8HapqLNPqFj4uttMhupSDNLaswl2u/U4OBz6e/LdR79A5Ucxrulmw1/UdG0yK5uEt7nyLZNvn3DnYrkEIvJ59Ko3+nalYPF/aVje2byjIFzbyRBsf3C4FepPHZ2118UtVbUf7LuRqNlYDUlt5LmS0hkSIt5ccZ3ZckDPbg9qwpNU8NJoXiHTL7xfPrhubbzdOiutPvlkgvo9zo8c027G44B5H6nKjVb6Byo4IvOJFwoIGAp2g5X601fJEvyu2QSUyOC3YZqP5t4IfGcEc4x7YpQyb87ACSQME8H1xXQQSK8pMolXCMD5hCAEfTFJGQokMJZpNuArKPu9zjmmLkFiWDAA7huzuoUqQ4UBGIzu3HGPTJoAk3M0JE2VUMDGVQAlu4xxQCyw4gywLZk3ICQe2BzTM7Yzuw4JAA3H5T65ozujGzCAN8w3Ebj65NAD5cOsRmLLKFxhUGNnYkZFOZ5h5AhXdGqjyyUDEnvnIqJ2VVjDgSHGQ249P7uRSvlvLKuqKVG1SxG2kA6QW5mzI7gsQZQFyA3cA5qQSXXnnKAA8N8gwE6Z3Yz+tQs8YkG6MMQQGJJyxHfFKA/mkmUHByfm5I/u4oAWLyVkJjZ2dQ3khlADNjvzSq0rJMJgViIyzBApDZ4AwBTEdC5CoELBgrbidnvzSLlVkZmV1xgoGJyT3/CgDRS0Rk04WwZbnU5SNjruSO2MogRwDknJDk89BVx9OltyLqK/Fqlkyz21yC6y4wjrKnlKDk7k4GcFsZPbFinkRJPJbyW27S+4klD/CGPI/CmZCxAMRJuOFG44THbNTZjOjkTUNctVu555JLkvI0kstvDFldhZZ28qLdIDscNzkEDg5yKk2hS7szXVuhWMPK4B2CMLI2enUbG3Dt+POWk9wkf7iTyVeOSB13feVyC20t64GcVHIyKIkZRIVXJbewBB5wMUuVrYDUutNuLeKK4hkjkjSO0MY8hg5+0AumC454wSexOPrNHoMbm0c3ISaaW4MqOPkiaN4IliJXLby0mCMdvbjHcSO8ZEoRTtKKXI8sYwBik81PP/wBWSQ+Blmzvz9/b0z3p2fcDaj0a7RriW+eOOApKkrRoVwWWPy2DbeVJePP1x1HEUGiyRvKRKHkje5hMao28NDG8j8YIP3SBweeOtZkTTxTmTzwTGHyA24sMEbQG4/w/CmRybzIqAoxViHLsdg6nk+tFpdw0LN1bS2pmt7iRCqrDIHiTALuocAZAzwf8niqGIf77/wDfA/xqVfljmaRhICQNoYn5v7xNQ7o/+eQ/76aq6agvIQHhgw64wfQ0oztbac88j+uKQZAbuOM0DBU4OCD+dIoCQVGRggnBHce9KdwVccr+eDSEnaoIyMnB9PxoPRSDj1HSgBW2kjOQcDI7UrFwwyMgYwcdR9aax6ZHIA59RVq2ls4Wk+0Wgug+3yx58kJjI6/6vrn+lJsDrb/xh4Y1a7+2ah4PhnuzHFEZTq15HuES7FG2NQv6Vjanqnh28txDYeGY9LmEqvJcpf3VyTGoOY9kwC8nBz7e9U/tuibv+QKAc/8AP9c8H8qcLzRvm/4kwIwcgX9zyPyrOKS2T+//AII2bf8AwmTt4rj8VLp6mSKEQ/Y/PYBgLY227zdme+fu1U0XxMNOg1Ww1HTotQ0bU5fOuLOR2iZZgciSGVRkMOO3YdMVnLeaIc40YA46m/uR+HSlN5owXLaMCM4GNQuTg/lS5VbYDV1HxHpraRLo+gaLHp9lcypLfyTTG7u52Q7lXzHXhenT9MndZXxXol5baWviXw+NSvdOhS3t7qK6ktmlt48lI7lFGDj/AD15wReaKVJXRgMHkHULkZ/Ska80Ubd2ig8cH7fcnj06UcqtsHU6OPxxNLqOuXOq6Yl5YazYR6e1rbytAILeIsY0ikAJ4yc8dTnjpWRqGuW93pOnaJHamCCx1C+vYnMplfbcuzCJsqPug4znnHSqn2zRsLjR1A7A6hcjH6UjXuh7jnRAT3P2+559+lOyXQNzfm8b6lN4bj8NtYoCIIrSW/8AMJke0ik3rHs2emB9/wDnVXRPEttY2F1ompaemq6TNN9qjgeRreaC4Ax5kEy5xnuMfzIbM+2aPn/kEL/4MLnn2ximre6GW40UA9j9vueP0o5VtYRqar4hsrvTY9G0rR49L0tJvtM+ZDc3VxcAABpJnUHHt/QYrG0++u9Mube/0+Urd20qSxttB249VPBB6H2NTfbNGw2dHBHcDULk/wBKRb3RSGxowHr/AKfcjPt0prRWsFjobjxL4Ov5Pt2qeEAb52aSb7HqE1vbXEp5LtCFyM9+fxNMi8bX0eu2GtmxgeCytJbCysICYYLaBozEI0YKx4zknHPsBgYTXmihV3aMDnpjULk4/SlF5o21SujgLnp/aFyOfXpU8q7AdFB4x0hNDsdB1Dw5Hc28DefMI7+4thPPknzZVgUZPsSeg9OKqeKLXT9Q0y/8PaBDpz23nJOrXdxdx31vKFBikEwGAMHof5VjPeaICA2ignAyft9zz+lKbvRyV/4lCjIGP+JhcjA/KnyrXQDoo/FnhewmurzRvC8Vpq06OiT3F09zbWzyAh2ggZdv0/LocHkRJOzymQYD7jK20AjPJOQKtfbdD3f8gTnP/P8A3PX16U/7Zo+WzpCnAOf+Jjckt7dKqPu7IGrmvpvibTRpdvo2t6T/AGra2Mkkmmuk72tzbiQ5eMSKDlT6f4DbFqfiebUbrSJRZRWWl6JJAdNsISxRBHIshDORks2Bk4/+vlpe6KSduigHB5+33IwPrilN5ooUk6OCM9BqFyefXpUpLewD9Z1VtY1HU9USERtfTiWWHPmCIBAoAJAz064rQ0XxDYafper6Tq+mNe2WpvbylIZzbSo8ByrBlB46fl71mLeaKVbbowXB5zqFyM/pSPeaKFTdowbOcY1C5OPbpTfw2toFtSxqutSajp/hqxS2CJo1rNbJLu3mfzHVsspXjGPU1afxXexp4NFtGtvdeGluBHLuMgn89lZg6YGBgEEZPWs77ZoxCY0cAdgdQuR+PSmte6IG50UE8ZP2+55/SiytawI6ceLvDcd6+rweEYF1pt0gle9leyW4fJM4t9oGe/X9ea42e4kurq5upn3TXE0k8hCqitI7FjhV4Az7Vd+2aNu/5A4z/wBhC549ulNF7omeNFGf+v8Auf8AChe69EG5Pea3Jd6HoeitahF0ma9m88SZMxuXL4KbQBjPqaTQNbbQrm+uVtluDdabd6eUaQx7Bcbf3gIU9MdKh+2aLz/xJgf+3+5/wpBe6J/0Bh/4H3P+FHS1hmnpHiS1tdLl0PWdMXU9Jaf7VboJmt7i1uCMF4ZVBOD3HufXBdqPikXR0K30/TorHRtFuo7u1sUlaRpJlcOZJ5mGSx5Gcdz1rL+2aJj/AJAox/1/3P8AhSfbNEx/yBh/4H3P+FTZXvYDdi8azJq3iC9n06GfTtf2jUtMmkYoyqoVSkoUEMOcHb39gQy68S6RFpt9pvh/QU09dRAS9ubm5a9uHhBJ8qNpF+Uf568jGN7onGdFH/gfc/4UfbNF4/4kw/8AA+5/wo5V2Az8rnqR607c+7kcd+O31q8b3RAedFGf+v8Auf8ACl+16Nn/AJA659r+5/wrTmfYmxQXGflJ3c7cgUAsQwfIX1wAc1eF7ohPGige/wBvueP0pftmigH/AIkykdwL+5/wo5n2DlKCnCt5eST97IHT2FKTlV8zII+7gDp7irwvNEIONGA9c39zg/pQbzRQBnRgR2/0+5OP0o5n2CxRywVRHkrnJJAJ3UPtJBcsHwN4AGKlupbObyja2gtFUMHX7RLNvJ6H950quzKCoKhiAOcnmq6CsSlpt67RkADZwDlfc00eV5nDN1yOON31ppBLjDgZwQM8j2xQGQycJgk4ByeD64piHhpSX3jCkHf8oGPpTU2jdsLF8ELkAcd6FBBYswYAHIDZ3UilSHCgKcfeyenpQMdlih8zIXPy8DO76UgJCHysnJ+fIBPtxTRhVYnDA4GAeh9aM7k4wgB55PzfjQA9zlUMpIfGAAB933FKTJiMRAlB907QSW75pjFVVAwDnqDk4HtxQ2W2EMqAgAKSRj3oAc/kmTMjNuODIFAIB74NP3XPm8LgdB8oxs9c9ajZkVwDGHK4BJJ+Y+uBS7W83JlA5z159cYoEEfkiTKF2YZ8sEAAt2yaVTMRKJcrHj5ztAOe2MU1HUuwSMKWyA2SSnv6UiAL5jM6uAPuhid31oQ2LGVVZPK3NIRj5lHC98Cm5n/un/vgf4UqnckiqAnQs2TyPQk0zaf76f8AfVAxFzhtp5x09RXc/DfRNF1y/wBWh1WzW5jgs45YlZ5Y9rmQKTmJlNcKMEN2PavS/hD/AMhTXf8AsHxf+jRWVR2i7Frc7z/hAPAX/QFj/wDAi8/+O0n/AAr/AMA/9AWP/wACLz/47XU0Vwc8u5Zy/wDwgHgL/oCx/wDgRef/AB2k/wCFf+Af+gLH/wCBF5/8drqaKOeXcDkZ/AfgVXswujxjzLlY3/0i75Xy5Gx/rPYVN/wgHgIcjRY//Ai8/wDjtbt7JHEbB5G2qLxRnBP/ACyl7KCaX7fYf89h/wB8S/8AxNVzTfViMH/hAPAX/QFi/wDAi7/+O0DwB4CGcaLHz/08Xf8AWWt77fYf89h/3xL/APE0fb7D/nsP++Jf/iaXNPuwMH/hAPAR/wCYLF/4EXf/AMdo/wCEA8BYx/YsWP8Ar4u//jtb32+w/wCew/74l/8AiaPt9h/z2H/fEv8A8TRzT7sNDB/4QDwF/wBAWP8A8CLz/wCO0f8ACA+A/wDoCxf+BF3/APHa3vt9h/z2H/fEv/xNH2+w/wCew/74l/8AiafNPuw0MH/hX/gH/oCx/wDgRef/AB2mv4E+HyAGTSIFDOkYLXN0uXc7VUEy9SeBW+2o6cgLNcAKMZJSXHJwP4aqak1jf28Vv9qMYW8s7h2QXEb7YJllIR4wGBOOCDRzT7sehlp4C+HzgmPR4WCs8bFLm7YB0JVlOJeoOQaQ+BPh95iwHSIfNZGlWP7Rd7iikKzAeb0BIH406O0a3dFg1CNrdrgyzCc3rS7F1B75QGIOWYNscn079BWOmSm3li/tZTI0UkYkxdB2R5rab7OzOrEIAhjBweMEgnO53n3Yi1/wr/wGP+YLH/4EXn/x2g+APAR66LH/AOBF5/8AHadp8X2W8tvMvZHs7exibDtPJuvyptyQzKCVCAdVHJB+m59vsP8AnsP++Jf/AImk3PuwMH/hAPAXH/Eli46f6Rd//HaP+EA8BHn+xY//AAIvP/jtb32+w/57D/viX/4mkGoacSwFwCUIDAJLwSNwz8tLmn3YaGF/wgPgP/oDRf8AgRd//HaP+EA8Bf8AQFj/APAi8/8Ajtb32+w/57D/AL4l/wDiaPt9h/z2H/fEv/xNPmn3YaGD/wAID4D/AOgLFz/08Xf/AMdoHgDwEOmix/8AgRef/Ha3vt9h/wA9h/3xL/8AE0fb7D/nsP8AviX/AOJo5qndhoYJ8AeAjgHRY8D/AKeLv/47WF4u8H+ENM8Oaze2Glxw3UEcbRSCa4coWkVSQsjleh9K7v7fYf8APYf98S//ABNc147vbJ/Cmuosy7njhVQVdckzJwCwApxlO61YaHgLYO0vkNjnA7UEtldvQAY70hIG3Izx1oPJHOOnHpXoGYHbu69/wz9aXLZORx3+lJkbun+fpQM56/8A16APVvh74W8L6zoc13qenJcXC380IkaW4QiNUQgYjcDue1dh/wAIB4C/6Asf/gRef/HayfhV/wAi1cf9hO4/9Ajrvq4Kk5KT1NDl/wDhAPAX/QFj/wDAi8/+O0f8IB4C/wCgLH/4EXn/AMdrqKKz55dxnJz+AfAiQXDro0YZIZWU/aLs4KoSDzLVmPwX4JaOJjoViSY0J+V+pUH+9W7ckC2vCegt5yf+/bVBFfWPlQfvh/qo/wCCX+6P9mnzSa3AzP8AhC/BH/QCsP8Avl//AIqk/wCEK8Ef9AKx/wC+X/8Aiq1/t9h/z2H/AHxL/wDE0fb7D/nsP++Jf/iaXveYGT/whfgj/oBWH/fL/wDxVJ/whfgj/oBWH/fL/wDxVa/2+w/57D/viX/4mj7fYf8APYf98S//ABNHveYGR/whfgj/AKAVh/3y/wD8VSjwX4I7aFYf98v/APFVrfb7D/nsP++Jf/iaX7fYf89h/wB8S/8AxNHveYHL22h/De7nmt10S0jljLhRcRPEJgkkkTNCS/IBRvyz0oOj/CtZvs/2HSPO8+O2CfMSZZYvPRQd2OR0PTt1rRFnoAhaK2ujBOt7LePcwQL57TS+azCQvEVPEjAZHGR3pUs9KiMXlajcKIpLKVB5Sth7a1+xHJaLPzpw3oeRiq18w0KaeHPhq5C/2bpCyG3F00TyASpCVEm918zgAEEmo5NC+HAiglg0axvBcPJHAunxtcPIYxmTbsfGF/i59upwbFxpmktZXFvbXrJM0PlwySxuQGFiungttQH7oz9fyqS0to47PT45tUaO/tJLt1urWJnLLcuWdZRcRlWJ4LEqORnjua9LiID4b+GqCdn07R0+z7PtAkfaYTJwolDPwT0578Uf8I78MytwwsNEK25UXBEi4iLEqofD8ZOQKsR6boiXlxetf3Mks01vMwlTODBcC6UZEQOMj8BwMYqsNH0mWGRLvUZXkMzywFIQI7dTdS3QVVMXzZ3c7s+2KWvmPQdb+Gfhzcy3cFtpWmSy2jRrcIgZinmIJFP3uhB4P+FWT4L8EH/mBWH/AHy//wAVVmz/ALJ03zvKuyIZFtEETRbY0eGJLZSmyMH5gFGOnHGM1d+32H/PYf8AfEv/AMTQ+bpcRkjwX4IH/MCsP++H/wDiqD4L8EHk6FYf98v/APFVrfb7D/nsP++Jf/iaPt9h/wA9h/3xL/8AE0ve8wMkeDPBIxjQrDjp8jf/ABVJ/wAIV4I/6AVh/wB8v/8AFVr/AG+w/wCew/74l/8AiaPt9h/z2H/fEv8A8TReXmBk/wDCGeCef+JFYc9fkb/4quS8f+HPDeleHnu9N0u1troXtpEssStu2vuyOSeteh/b7D/nsP8AviX/AOJri/iXdW03heRIpcsb+yP3XGAC/OWAq4OXMr3E7WPE/nKN5hIXPHAzu9hUf7v1f8hThgKxJDdsDOPqablf7o/WvQZCAYwcj6H3r0r4Q/8AIU13/sHxf+jhXmoyA3cd69K+EWP7U13/ALB8X/o4VlV+BlLc9k5orlJ7bXY7zX9TtmlXyLuRIUAuZpJ4Hgt4zst2byiqZd1wpJZcdyGkS+1wzWiM11Payy30KE2Jhnnh25juJ8xBAoO5SAYycA4OcVwW0LOn5orjoG12ML8l1NKr6TPbWs8BW3hH9lnIjcKMfvAVYFzjvycmeK78SziNIri7EbnLXM2mpFMsgspZZIRFIgXaHCAHb/EVySMhuNgWp0Vx9/T/APr8X/0TLVjLep/Os9JJ5rbQZp02TytayzptK7JXtnZl2nkYOaw9U1G80++1eWCaSd1t98YIuzFp4VYl2S2wxCytyVYHdlscjlS19AOsy3qfzoyfU/nXJHWdf8yyji8h4JLidIrye3lgS9VJo0CBArEHBbGMZ25HANJFrWvv55uDBbR/a4oZnFtNNLp4LzDEkQUAg7UUHceWz0IwuVgddlvU0Zb1P51yc2p6rp/hzQ5ohM17JbsXMsDvukSJ5AkofLgsQABgntkdatJPqr2njINeTfaIhNJYp9nCvbRvZrLH5RA+YZyB7r60OO4HRZb1NGW9T+dcrHc6zZW3lm52WlvPp9iZnspJXgjks47mS6kJYk5c7PQZyc44dDqXiSZ7Zn2Rxs+nW7oLJwzfa1mBuAXbIxhH2kcZwfYcbAtToL4n7LLyfvQf+jkqzk5xk9cdaw7CW5m8PWMlzcPPctDai4kki8qTzhKgdHTA5U5B47VtsQu5iQAuSSeAAOcmhqysBy8Wu6/PFp8kdvETeak1rjyJIAkUa3Eh2SXEu1ywTqAAOeDkCksvFn7iA6jbziU2wu7p7WPdFAJIGu0TCs3G3HJI5YZ68bFrp+hRPGbWOHcxF9CqTPIAHDr50SM5AB3sMgY+alXTdEE4iW2gE0VpHGYQXx9lKvAgkiztIxuUZB70adgKFzrupwSTRSac9sqacb5pJJoZ2jPnCIKY43AIP+8P05dN4mtIgR9nuWlEn2dowUylx5s0XlOQTg/unbp0A/vVPLp/hq1FrFPFaRbxJa26zzMrSiVlLRgu+WyQODnHHSpxp+jXUdxIltC6Xtwt3NJFvRpLiMCISh0IYMMYyCP15Pd7AWra5F1bW1yizIs8SSqkylJUDDO11PII70yAn7RqXJ/10P8A6ISpkjSJI4kXakaqiLycKowBk81BB/x8al/12g/9EJRpqBZy3qfzrI1PWJdOuBCLeaZW0y9vVMEUszLLA8aqHEfRDnk1f+26f9p+xfa7b7Zwfs5lQTcrv/1ed3TnpQIrG7C3ISOYS28lssoyQ1vKQXT6EgZ+lSBjzeI5EtZ5FtpMpbyRrcFkNv8A2gtib7yfL3eZtxxnHXj3q3Za5De3stkkNyDEJlM+0+Q0kBVZFyOnJ+XJ5wfTmc6PpBkeVrGLe8Jt2JDYMZi8jG3O3O35c4zjjOKkjstPtrh544kjuJwwOHYbzgbiIy23PAyQueOar3QLWW9T+dcf8SSf+EP1fJP+u0//ANKY67DB9DXH/En/AJE/V/8Artp//pSlOn8SA8B5429KQ4zz170HnHb2oJ9s/wBa9IzF+bPHT+lINuf5Ud+tGeelAHuXwqyfDVx6/wBp3H/oEdd7XlXgiG7uPCUENspdn8SqJRvnjjMXlgt5r2/zhemfwrrEl8RWUiWX2m4le2Cwq0ljJNby2v2QyNeNOAXLK/yhfMyQoGCW3V59RXkyzqaK4+SbXJorW4LahA6R2P2i5itgZnjTU9khVBCMoU+cDygcdRyQZxda7FKIo0njU3UzW0SWReO8L6nMsonlKnYBHtYHK/ezzjbU8ozpLn/j2u/+vef/ANAanRFvJg5P+qj/APQRWFp8+tyLdrqDSSRzaVJcr5lssAhm82aMwgqB/CFPOT36HAy11S7szJGl5IyyXltHJqEsd3PFDFM037k2kmEWRAAMrwQMkD+I5egHaZb1P50Zb1NcimteJ2mt1+ywZNis6wSRTRvekwyvviG0kEkL8u4YyQeoqvPq+vTaZceZPHH51tqAintbS4mlkmW3jKWu1FXa5LOQRz8o7g5XKB22W9T+dGW9TWDqep6hZ3eh29sjss5tBOHhLo6STxwPhxk7lBLHpjGSccVTJ1a58OSxyX1y17/aSWtxKLfy5kjOoJE0ZVMHG05yD0PXHNHKK51WW9T+dGW9T+dctPqOu28Ks06Rq8urrbn+z5ZcNZzGG2tSFYtmUAtuPXGB1zUV5qHidodR2MYS8WrJAsFoWltXs0jlVg5JDFsuv3fTHI+Y5bjOmtyfM1Hk/wDH36/9MIqp6hqF/b32lWdsoIu47mSVzbT3JURPCgGIXXaDvOWOQMVPp7B0uHEvmh5o280Ls8zNvCd+3tnriku7fSLiRJLwxebYr5gczPE8CTMOWKMp2sVHXg7fah7gc9B4n1hXhlvbVEtXjuZdsJjeRma8+wwQhhIeAeWbbz6ADnQk8RytZ31zaabdSGysnurhbiSOAQybXZY2Dncc7c5A6EevF+fT9EihYz28EcAQQFm3KFWScShQwOQS5BBBzmlfSdGH7yS0i+S2e3Z5WcgwbXDCQu2DwzcnP3jzzRpbYCm2v+RJdJdwSoyACKNNhPni2gn+zBw+Gdt/ynAHB9MmfTtbg1K5ureKG5QQiQrM6nypPKlMDgMOAcjgZ5HPbALe38OXQtltltLgJLDfQGNzNiW0C26TB8nlOF61cgsbO2knmghEbzszSlWfaWZi7EITtGTknAGTQ7AF4T5HU/6+07/9PEdWcn1P51VvP9R/23tP/SiOrJ7+2SaXQAy3qfzrAbxDIlxLDJbyqkWrXVlJP5M3kC2ggknLiX7u/wCXp+lakWo6XcI8kF7azRo8UbtDKkgV5WCoDsJ6ngVJ9hs/+fePm5e8IIJzcOpRpCD3IJB+tG24GNJ4l8s27zW09tGFN3cLMY5ZGsms7m5jkiMTkbiYyCD/AFzWnpupDUoJJhDPAY5TCyTAjJCq4ZG6EYI59QR2psWjaPAnlx2MITczbSrOOYmgx85Py7WZQOgB4FWLW2tLVGgtl2qjZZPMeRlYqMbjIxbpjHPSn7vQCfLep/OuH+KJz4VkyTj+0bL/ANnruMH0rh/ih/yKsn/YRsv/AGenT+JCZ4UMYO3O71Pp7UmZPejOVIAAHc/4mkx/tCvTIFGedvXH6V6V8Is/2prv/YPi/wDRwrzUYOe1elfCL/kKa7/2D4v/AEcKyq/Axrc9koyaKK88sOaOaKKQFe5+/p//AF+L/wCipaZfz6dDbn+0GT7PI6x7JFaTzH++FWNAWJ4zwO2e1Oufv6f/ANfi/wDoqWmXtkbv7I8dxLbXFpM01vNEsblS8bQsGSUFSCCf8jmuwFM+ILNm1ryVeaHS7CO+mmRgEmV4jOqxEjB+XBznHNT/ANu6IIUnN9GI2d4wSJNytGod9y7dwABBJIxgg5weY4tEs4bTUbOOWcQ31pFZuWKlo0jgNvuU46kcnjrTLjQopprq4S8uoJbrzo52jELbreaCC3kiAkU4z5akHqDntxRoBOmtabuZZZhA/wBrntEEhJ8wxSLF5mUBAUkgAkjr70+41S0tLiWK4cRxwW0NxNM5O2MzzmCKPaATliDj6e/FBvDOnGaGYOcxySEpLDbzoY3kWURgTKcYI4I55/K1caa1xfvcM+2GWHTi4U/vBPYXZuo8AjG1skN9Pfg0Akg1nR7lbh4L2OQW8DXM23eCkS53N8wHQghvQ8HBqGPW7aS2juNpDLLZRXkW5s2punWPDOV2kqSA4B459OYpdCjZEjjnfaxuIrgS4+e2ur4X86DaOpxsHsfWluNFaR7545yf7QurF7iMhIokhgnE7MqxL80hxt3HnGOeORWA0L7P2WbPXdB/6OSpplLx3CLjc8cqLnpllIGahvubWb/eh/8ARyVZPU/U0ugHKL4f1OCC2VJ5Jyml6da3EU92wEhgnjkmtopFUFUZQRn8Ohpkmha00RCMqqwtwbdbnc32dLq7mFoJZVIIQOmMjB246DNddWFqd7qyS6qlg0aiwtLGaTzBDwJ2nd5MzELwEUdehbqQKpSYDZ9O1QQ6GLUOb6zgWBrye7RmSNmjMkdwnl4kVtvOADlRjGcihJomuOHUKqTLpz28V0l4Qzu9wZZElBBPKgIhwcbmP0uwa1PObRySjNqlvaz2xhZNkE4kgXEjjkh1JODwQV/hyehou0BQ0i1ms7GKCYy7xJM4WWWOVo1dywQNGqrgdgBx07VNB/x8al/12g/9EJVmq0H/AB8al/12g/8ARCUt7gZU+najLe3yiC3Frc6ppepLdtMPMiWzS3DKkQXdvJQqDnGG/A5/9i+IzLZnfEPKsZrd5UuWDMZLW4j2OSCx+dkYEEDAzyRXXVhT6zdW89+Etjc7b+Sxt4hJHCEFtYC9lkd2BPPIHHp9aE3sNFWHQL+3kL28zROJFEMhuriTy4301oJTtckcy4c+uM9RVe28Pakn9mSyKTcW09wQ010kn2dprUQ/aIPLRR94BiDyevU4N9PEUskcZj0yQzyyQ+VE9zEoMM1nJfJI8gUgHCkEYPPcjmlj1ya5jtZkt3th9r0cvHI8cpms9TGyMkqOGBIJH+z1INU3LqSirpmhahE+nG9aVo7eeSeeN7sSI8wt1jWVFiVcgsNxDZ5GetQfEn/kT9X/AOu2n/8ApSldhXH/ABJ/5E/V/wDrtp//AKUpTi25oDwA+/WjnjH4Uenej8a9AgOM0c55o79KO/WgD3H4Vf8AItXH/YTuP/QI676uB+FX/ItXH/YTuP8A0COu+rzqnxstBk0c0UVmMiuf+Pa7/wCvef8A9ANVJ7zSYBpkV9NCspEM1sJQTscARCXIBCjLbcnA5xVu5/49rv8A695//QGrPudJivjDK1zPEstlBZ3ccQjK3NureaEJdSRyWGQRwx+opeYES+IrI2r3jRTJa/2q2lq7BtzMrmPzTGV3YyOBgnp34Fv+2dILWyrexM9zEktuFLESLIGKDdjaC2DtBIzj2oGmQCG2h82Ui31KTU1J25MjzSTlDx93LkfhVOLw7bQ7FS7uvILW8k8JEO2eW3kaWJ2bbuGCRkA87R77jSwFy01fT7r7GiTBLi6toblYGzuUSRCcIzAbNwBzjOcc4xzUcmuaZA119qnSBIbqSzjeQsfNeGJJZSqqpICZ5+hPAFQ2Xh+xsbqG6ics0cUK4lht2cyRWy2gkWbb5gyoGQDj8DgodEWWTUfOlZY5p9Skg8ogsE1C3SGUOGHVSGK896PduBZfWLH7JNd2sq3IjnitVWNtheeVkVEy46HcGzjGOelOj1W0ml09YGMsN8LlYZ13KvmQIJQu1wCQy5ZT04981Aujql1byrMTCji4kVwpY3EVoljCV4xgDcxz3I9OGWujtaS6YFnMkFrPe3bbwiYmmhFukcMUYCKgBY4Hf68FkI0bf/Waj/19/wDtCKsfVNGu7641aaOeWMT2NhbwRxz+XHLJDLM7C4XaePmGOfWti3/1mo/9ff8A7QiqxQ9GM5eXRtWluLpyI/nnlkkma6kf7bG19DcQq0LDC+UqlR+Q4Y1Lp+kahAmtrfB7v7ZBNC8cl0ggvN7yHdhYw6kghSSTjp0XNauq3M1pYXU8JAmHkxRMQCEeeVIFcg8cbs/hWUdX1K11Ca0vyqQ/a1ZZUiEuy2y+1f3JJG4bCSwG35jjBXL1asBWl0nxDLbTpKFnWS3e1iimuwZoomuIWDNKqqjSKofa2PQEnBLW9N0rUrbVJrqd5RAUkWIC5R4xCyRrHBIhTeSmDg78d/4iK1NMnnuLUmdg00N1e2kjgBQ5triSEPheOQBV2i7ArXn+o/7b2n/pRHU8gLJKo6sjqM+pBFQXn+o/7b2n/pRHVn1qXsBzFvpOsmPTmkigtZbGx0zT/wB1cb3uFgu7aeR3dFACgIwQc53npnmK10LV3eRb8R/Zpb63uZoYbqQRuEguo5CoTDYZmiOCxJ28niunnlEEFzORuEMMsxUd/LQvj9KwYtevUFjAbFrqaSPTY5JxcQwo11fQNcKoTacKMEE/TAPak29gKraDrK2ccKSs26PSZL2P7WztdTwxTR3B33AZeSY25GDs7Ypsnh/U1W88kbnuG0mW4la6Uz3aW9uIJYJWdNmcgPnbg4xxV7/hJJHNp5GmSSLcJpwBa5ij2TXwk8uMgg8Aqdx/EA9Ktafqb3t1B8rJBd6VHexxPtLQSxztDKpZeoOVx/u+9O8hCaRpk9nJcz3LySTPDZQQvNcNNIIoreNHVsAJncDkhRnrXP8AxR/5FWT/ALCNl/7PXcVw/wAUf+RVk/7CNl/7PRF3kmB4T82PmPHak+T3/SjgDrn2oyP7o/WvRIF7HcPyr0f4TO6anrhSGSXNhECEaNSP3o5PmMorzgZAPevSvhF/yFNd/wCwfF/6OFRU+BjW56559x/z43H/AH8tf/jtHn3H/Pjcf9/LX/47VimSHEcp8xYsI581sbY8D753cYHXmvOv5FkXn3H/AD43H/fy1/8AjtHn3H/Pjcf9/LX/AOO1R8P3ZvNKtpXuxdyrJdRSz7oyzFJ5FXf5QCg42noOvvWtT26AZ9xPcb7D/Qrj/j7X+O15/dS8f62rHn3H/Pjcf9/LX/47SXP39P8A+vxf/RUtWabYFfz7j/nxuP8Av5a//HaPPuP+fG4/7+Wv/wAdqxWXrU8lvbWhFw1tDLf2sF3coVVoLeQtuYOwIXJ2rntu7dQvkBc8+4/58bj/AL+Wv/x2jz7j/nxuP+/lr/8AHaw/7UgTQklvtQnSYDCyQvFDd3CSXEsVq2XXaPNCg5wB1PAoivnN94dtTq6SXrWsEupIk1v9jmiaF1zEoALO7crtPRSeAcM7eQG559x/z43H/fy1/wDjtHn3H/Pjcf8Afy1/+O1YopX8gM69nuPssv8AoVwPmh5323/PVPSWrJnuMn/Qbjr/AM9LX/47SX3/AB6zf70H/o5Ksnqfqad9NgK/n3H/AD43H/fy1/8AjtVXhElxLcvp9wzSwQQSxu9m0TiCVpo2KmTqpJx9fatKue8TXOo2sVvJaXQiIiu9kSTxQzz3YCeQEWRGLrnIZBgncPSktwLrWkBnjuF0uWORboXshiazXz51jeNXlPmZONxI568/W559x/z43H/fy1/+O1nWwun1mfF1dmG2tEa9hkkDW/2y52ukUSlcjYoJPzfxitmgCv59x/z43H/fy1/+O1XhnuPP1H/Qrj/Ww/x2vH7hP+mtaFVoP+PjUv8ArtB/6ISmnvoAvn3H/Pjcf9/LX/47VQW8Ynup206d2uJBMyyPZsqSeR9mZk/eZBZcBuf5835iFimYyrCBG5Mz7dsWB987/lwOvNcb/a93JpunSf2tIHGm6nNFPEYS95qdvMqQ28mEKkkHOwAZz7cC16AdMsMClCukEFAgQj7GNoSJoFA/e9lJUexxUb2sLG126ZNGLeW2lVYWs1D/AGVWWFHxJ91M5Uew/Gha6ref2zeC/F3aWgsWZIrmER2sRiuFiEvm85L5PfoQOo5hv5tRtn8QXFne3jQWi2lq/wBolRoo7m6njeaSMshCiFCOcEDccg7KAOh8+4/58bj/AL+Wv/x2uR+IsszeEdWVrWaNTNYZd3gIH+kp2SQn9K6bR7g3NhFITK22W4h3yzC483ypWTzEmCqGQ4+U7RxXP/En/kT9X/67af8A+lKVUPjQjwDntQcd6KK9AgOaOM0d+tJQB7b8LpZk8OThbaWQf2lcHcjQAZ2Jx+8cH9K7vz7j/nxuP+/lr/8AHa4n4Vf8i1cf9hO4/wDQI676vPqP3mWiv59x/wA+Nx/38tf/AI7R59x/z43H/fy1/wDjtZ9/eG31jw9Cb9Io7pruOS0Ywr5p8l2RyW+f7wAXBAz6k8bFR8hlK4nuPs91/oVx/qJv+Wlr/cPpLTop7jyoP9CuP9VH/wAtLX+6P+mtTXP/AB7Xf/XvP/6A1LF/qoP+uUf/AKCKd9NgI/PuP+fG4/7+Wv8A8do8+4/58bj/AL+Wv/x2rFc/4gvLi2aJVvZbNP7P1G5t3i2ZuNQh8rybc71Oc5Y7Ry34Ut+gGx59x/z43H/fy1/+O0efcf8APjcf9/LX/wCO1j6tqUQTTI4tTFrqE06xKizQpbrJEY2uPtXmjG1AcYzklgBycq3S9Qup9X1G3uGlZvM1FUiWdGjtYba4WKMS24jDKXBDKxdt2T26O3kI2vPuP+fG4/7+Wv8A8do8+4/58bj/AL+Wv/x2rFFK/kMz7ee48zUP9CuObv8A56WvH7mLj/W1Y8+4/wCfG4/7+Wv/AMdot/8AWaj/ANff/tCKrFNsChdq17bXFrNY3XlzpsYpJahlOQQykydQcEfSmyQwS7fO0cyFbhbvMn2Mn7QoCiX/AFn3uAPw9qtXRnFreGCSOKcW8xhkmGY45Ah2u/sDya48ahqn2K4lk1ILDa3bGIvqMYkv1WzDSQQXcMJViHPygJ7fw4AtQOotVktIEgjs7tlVpXZ5JbQu7yu0ruxEgGSST0qfz7j/AJ8bj/v5a/8Ax2pYnMkUMhR0Lxo5STh0LKDtcDuOhp9K/kBn3k9x5H/HlcD9/af8tLX/AJ7x+ktWPPuP+fG4/wC/lr/8dpLz/Uf9t7T/ANKI6s+tO+mwFZppmVlawnKsCrAva4IIwQf3tVLe1ht4raIaZNIbcW4SWVrMyk26GOJmYSDlQcA/40zxBdvZWMU6Xy2ZW9sQSTEDOjXEavFmXtgknHOB1FZh1OQajdGbU5YokudSjuYE8vy7XS4bPzo7xRsJBztIbJB345xhRAbKwW6bNuj7dhhZMfYxtMGfLI/e/wAOTt+tJDAtvO88Wn3CE28dqiK9mscUSO8uEUSdy2T9B6VlxapcR6Bf3MF4Lm6Zb+fTRLJDNcrbx7Som8sbS6AhmGOMgHOOc+XVbvyGCahdReRb6i9nKJ4rpdR1CGSERxRzeUodTuxtCDkn+5kOzvYDrvPuP+fG4/7+Wv8A8drifibLK/heQPbSxr/aFkdztAR/HxiNyf0rvRnAyMHAyPQ9xXD/ABR/5FWT/sI2X/s9EH7yEeEjGOM5o+f3o6jpj3ox7ivRIFHfHWvR/hMkr6nrgSZ4iLCIkokbEjzRxiQEV5uMHPavSfhI8aanrpd0UGwiALsFB/fD1qKnwsa3PXfIuv8An+m/7823/wARSPHOiO8moSKiKWdnitQqqBkliUxipfPtv+e8H/f2P/Go57hFhnMD2sk4icwxyzokbyAHarsM4BPU4NefqWRW5FzEs1rqnnQsWAeBLR0JU7SMqnUd6l8i6/5/pv8Avzbf/EVS0fNvay/a2to7ue5lubpluYpFlmkC7nXaAAONqj0Uck8nR8+2/wCe8H/f2P8AxpsCpcQ3W+w/02Y/6Wo/1Vtx+6l5+5U/kXX/AD/Tf9+bb/4io7me236f+/h4u1P+tT/nlL71Y8+2/wCe8H/f2P8Axod7AR+Rdf8AP9N/35tv/iKjn3W8Uk1xqbRQoBvkmjtFQAnABLJjnpVjz7b/AJ7wf9/Y/wDGqGqL9oisntpbSSWzv7a9EUs6Iswi3KU3jODzkcdQPqEA+SWFLZbuXWEW0dUZZ2Wz8llb7pD7MHPak822863g/tiLz50ElvGBYl5IyCQ0YCZIIBIx6e1UEGqWelfZLQ6cbrLOJPtaKkRuriWWURKyEZjBATPBJ5AAw1OPTJo9Q0maI2UNrappq+WbxHVI7WN4ys0ez55BuPluGGM9OPmoDpPIuv8An+m/7823/wARR5F1/wA/03/fm2/+IqTz7b/nvB/39j/xo8+2/wCe8H/f2P8AxqdQKd7DdfZpf9NmPzQ8eVbD/lqnolWTBdZP+nTdf+eNt/8AEVFez232WX9/D96D/lqn/PVPerJntcn9/B1/56x/409bAReRdf8AP9N/35tv/iKguJI7TyTdausHmPshM62ce5/RdyVb8+2/57wf9/Y/8axtetBqMca200SzPb3lk0wvYoljgulVXEiFH3KcA4GD8vUZyEgL0cscs81rFq4e5hyZoUS0MkeMffUJx1H51P5F1/z/AE3/AH5tv/iKzLWB4NTkmSaGCy2T+ep1AzrezP5YSYQN8qEYJbB5z36jX8+2/wCe8H/f2P8AxpsCPyLr/n+m/wC/Nt/8RUEMN15+o/6bNxLD/wAsrbn9wn+xVvz7b/nvB/39j/xqvBPbefqP7+HmaHH71P8AngnvQr6gSGG5AJa/lCgEktFagAd85SqrXNnHFazNrcKw3TgWsh+wiOZun7ttmD+FW5ZrYxTDdbTZjceU8sQWXj7jFsjB6dK5ZNO1H7DBARpgkbTNU0eVGvUKQpeSrKtwhVOQMEFcDoOfQQHRRyJNNPbxauJLi3x58SLZtJHk4+dQmaY1zbo11G2tRq9qnmXSkWQMCHHMvycdR19feqcBvk1C7upo7JxDbmz00i/jCmDzI2YyDZuDuRubqBtA7ljn/wBm6mjXapeWrwLfNqKxTXqGO8lGoJfRgJ5eUIAZWOWySD0HBYDooQ9xFHNb6m0sMi5jkijtGRgOPlKpiuV+IsU6+EdVZ7qSRRNYZRo4FBzcp3RAf1rpNMVba3lE81qstxeXt68cc6MkRuZml8sMcZxnk4HOa574jywN4Q1ZVliZjNYYCujHi5TsDVQ+JCPAvrRzRRXeQHFHNFFAHtvwujnfw5OUuZIh/aVwNqxwsPuR85dSa7ryLr/n/m/782v/AMbrh/hZLCnhucPLEp/tO4OHdVONkfYmu88+1/57wf8Af2P/ABrz6nxMtFSR4454LaXVlS5mGYInSzEsmMn5FKZ7H8vap/Iuv+f+b/vza/8Axus6/M9xf6YoWzk063kiupGF5Ekpukc7CyFT8ifeADZJx0A+fV8+1/57wf8Af2P/ABqBla4guvs91/p0x/cTceTbf3D6JTooLryoP9Om/wBVH/yxtv7o/wBinXM9t9mu/wB/B/x7zf8ALVP7h96dFPbeVB+/g/1Uf/LVP7o96fQBPIuv+f6b/vzbf/EVDcSR2giN3q6wCSQJEZ1s4w7+i7k61a8+2/57wf8Af2P/ABrG1m3lunD2slhL52majpUq3FyqCIXnlkTjAbIG07hxnjmgC9cPFbtAl1qyxNO+yFZ0s0MjkgYUMnXkfn702K4t5riW1h1lZLqMOZYUW0MqiMhWLLszwSAfrVHUBe3ENpZLHZS2YkCXhN/Gk00EBRogNyEDeRl+cgDAPzZW/EqHUb++uLi2OY4rSxVZkOy3UCSRjk/edjz7ItMCx5F1/wA/03/fm2/+Io8i6/5/pv8Avzbf/EVJ59t/z3g/7+x/40efbf8APeD/AL+x/wCNLUCpbw3Xmah/pswxdf8APK25/cxc/cqfyLr/AJ/pv+/Nt/8AEUy3ntvM1D9/Dzd5H71P+eMXvU/n23/PeD/v7H/jTdwIzDcqCWv5QoBLExWoAA5JJKVVS5tJIEuI9bha3MyQJKv2Hy/OYgLGp2Y3HIwPf3qzcmyuLa7t5JIJEngmhdPPRN6yIVK7gcjPTNc02m3a2V5za3F3dX+n3CJdX8DNbRWYiUHzliALMEI4QcEcnGSLXcDp/Iuv+f6b/vzbf/EUnkXX/P8ATf8Afm2/+IqQXFuQC00CsQCy+dGcE8kZzR59t/z3g/7+x/40tQKl5DdeR/x+zH9/af8ALK2/57x+iVY8i6/5/pv+/Nt/8RUV5PbGD/Xwf6+0/wCWqf8APeP3qz59t/z3g/7+x/409bAVph5Cq9xqflo0iRK0yWahpJDtVFLJ1J4ApnmRfaHtP7XX7Uke94MWfmrGMHLJszjkH8feq2uL9rs44rZbKeZbq1mUzXMUXlCGZJWZWIbkgbeneqaWc4vWkk/s57ZL6/1QE3KGSdrq0Nv9ldSuAASQTkjCjj+6AaqvH9mN4mrKbQI0puEWzMOxchn8wJtwMdc1GLyy2Wr/ANuRCO4cx2rH7EFlcHZtjynXPH4+9UbKKaPRxpt1bWDKY75JIk1FVUo8hlRFdEBGdxGeMbe+eIJIdWe1t7SVrW5tZryae6SXUle4itldJIbQTyoSwyCXJ5x8o/vB21DodD5F1/z/AE3/AH5tv/iK4n4mxTr4XcvdSSD+0LIbWjhUZ+fnKKD+td19otv+e8H/AH9j/wAa4f4nywv4WkVJY2b+0LI4R1Y4+fsDRC/MhHhnOOaT5fel4+tGR6D9a9EgX69K9I+EkcT6nrgdEcCwiIDqrYPmjpmvNxxnvXo/wmeZdT1wxQiQmwiyDIseB5o5ywNZ1PhY1uexfZ7X/n3g/wC/Uf8AhTZIbdI5XW2tiyozKGjUKSBnBKqTj8D9Kb5t9/z5D/wJj/8AiabI17IkkZsyA6lSY7xUcZ4yroAQfQg1wallXSbm31K1knaztY2juZ7ZhGgZGMRA3gSxrIM+jKD+BBOh9ntf+feD/v1H/hVO0gmso5EhsnJllaaaSa+EssshCrvd5ASTgAD2A9Ksebff8+Q/8CY//iaGBHcwW2/T/wBxBzdqP9Un/PKX2qx9ntf+feD/AL9R/wCFU7iW932H+hj/AI+1x/pMZyfKl/2asebff8+Q/wDAmP8A+Jpu9gJPs9r/AM+8H/fqP/CqeoSQ2kdt5NlbSz3V1DZ26SKkcfmSbm3SMEJwACeAf14sebff8+Q/8CY//iar3cM17EIZ7FsLJHNG0V6I5I5YzuV43QBgR9f50gK/2yNtJ/tFbGzSRTIksUqu8aPDM0DgNbwvIRkHbhO/aq1vrNjc3en2wtLGH7RbWM8vnkFhJdxtIkMJjiMZIx3dc5wM9rYsHSAW8NrdQRqkaL9n1SSNl2M7lgVOdzFjvPU9844YmlW8clpJHpZT7Ktusca35EJNvnynkj+6zLk4JBP5cMDV+z2v/PvB/wB+o/8ACj7Pa/8APvB/36j/AMKj82+/58h/4Ex//E0ebff8+Q/8CY//AImlqBHewW32WX9xB96D/lkn/PVParJt7XJ/0eDr/wA8o/8ACqV7Le/Zpc2YA3Q/8vMZ/wCWqf7NWTLfZP8AoQ/8CY//AImnrYB/2e1/594P+/Uf+FZGtajb6QsL/YLV0aK6nd5h5aYt1VjDGyRN+8YE7AcD5TzWn5t9/wA+Q/8AAmP/AOJqtd2818qRz2cvlAnfHHqBjjmU9UmWPG5T3B/rykAltPFPf3to2nwRxQ2lndwSkRM06XDSLkoF+XG31P4d732e1/594P8Av1H/AIVQjtJo76bUFtbgzzRJA6tqGYfLQkqqxEbBgkkcdz61b82+/wCfIf8AgTH/APE0ASfZ7X/n3g/79R/4VXggtvP1H9xBxNDj90n/ADwT2qTzb7/nyH/gTH/8TVeGW98/Uf8AQx/rYc/6THx+4T/Zpq+oFz7Pa/8APvB/36j/AMK52bXbeG51K3Ol2xa2j1B4o8hZ2NntJaVWiChXB3IQzcDpk4G95t9/z5D/AMCY/wD4mqE2nLctdPcWM0xnRo8S6ixWFWZXItx0XlVPGPuj0oXmA7TrhdR09ruKysRL5k8Ua5xBIYn2b9zRCQA9cGMH271mvrsaLpBOl2R+3PKmRIvlybLoWoNu/lchgd6ltoI75PF06Uptri1Nnc+VcrOtyRqkgknacoXeRwcljtAz2HHQ4LX0eKUQiWyuJPLjELb9Tc+dAsnmrDNjAZAegP8AI4pq1wNj7Pa/88IP+/Uf+Fcj8R4YF8IasyRRKwmsMFY0UjNyncCuq86+/wCfIf8AgTH/APE1yXxFkum8JaqJLURqZrDLeej4/wBJj7AU6d+ZAeC0UUV3mYUUUUAe3/CyKB/Dc5eKJj/adwMuiscbI+5Fd59ntf8An3g/79R/4VwHwue5Xw5OI7YSL/aVx8xmROdkfGGFd35t9/z5D/wKj/8Aia8+p8TLRRvrqGzvdKtvsVm8V9MkBYqVkRmz8w/dGLAwODICc8AnhtL7Pa/8+8H/AH6j/wAKoz2stzPBPNZyt5LRyLF/aBFuZIm3o7wj5CVOCMjsPTi15t9/z5D/AMCo/wD4moGJc29r9nu/3EH/AB7zf8so/wC4fanRW9r5UH7iD/VR/wDLKP8Auj2qG4lvvs91/oQ/1E2f9JjP8B/2adFLfeVB/oQ/1Uf/AC8x/wB0f7NPoBP9ntf+feD/AL9R/wCFZmp3a2LBLfTrSd0srzUphLtiAtrXYGCERtlzu+XOBxyav+bff8+Q/wDAmP8A+Jqne2X9oGI3Ng5MaSxZivzEXhl2+ZDJ5eMo2BuB9KAI9TvrewhsbmOytJYbiSBSJFMb7ZWRRtKxMgxnJLMo4688OtLqOe/vrKeytIGhM5t0aGUTTwxS+X5y+ZCsZU5B+V2xuGetE9g1yvlzWly0Jkd3hGpuIZFYgmN0HBTjhenUdDzJFbSxXMt59jled1dFafUDKIkkYOyQq+QoJAzgdh2HDAvfZ7X/AJ94P+/Uf+FH2e1/594P+/Uf+FR+bff8+Q/8CY//AImjzb7/AJ8h/wCBMf8A8TS1Ajt4LbzNQ/cQcXeB+6j/AOeMXtVj7Pa/8+8H/fqP/CqlvLe+ZqGLMf8AH1z/AKTHwfJi/wBmp/Nvv+fIf+BMf/xNN3uAlwttb291OLOOUwQSzCKKGMySmNC2xBjqcYFYUetJNYaldxafpbtpzRmcCVhFKkkKyokDtBuMhJ2YKjn64rdaS+ZWU2eAylcrdorDIxkMBkGsyTSEkSJWtbvfHc/bPOGqyee84Tyg8knU7RwuemOMYoXmBrrBbFVJtoVJUEq0UeVJGcHA6il+z2v/AD7wf9+o/wDColkvlVV+x52gDLXUZY4GMkletL5t9/z5D/wJj/8AiaWoEd5BbCD/AFEH+vtP+WUf/PeP2qx9ntf+feD/AL9R/wCFU7yW98gZswB59p/y8x/894/9mrHm33/PkP8AwJj/APiaetgG3f2a1tby5Fkkxt4JZhDFEhklKKW2L8vU/Suck8SW8cEsv9nac5gkuFmlR3+yOIreK6CQyGDd5jB8KCoGUbn16N3vXR0NmQHVlJS7RWGRjKsoyD6VQOmAwm3a0uTG8jy3OdUk3XbOoVhctnLAgAYJxgY6cULz/MA1S+g0+0tLyOxtJY5miJWVTG+2TaQFKRMgPPJZlAx17gs9RsbzUb2yW3sUS3kuIU3D/SJnt2VJGVPK8vaCSOJCehwM8PuLF7pHjmtbkxSO7SxLqbrFIjqqtE6LgbMD7vTk/wB45WKxEN3Jex6ewmYzMoa+3RRtNgytFEfkBfA3YH8+QDR+z2v/AD7wf9+o/wDCuI+J8UCeFpGSKJT/AGhZDKIqnB39wK7Pzb7/AJ8h/wCBMf8A8TXE/E2S6bwu4kthGv8AaFmdwmR+fn4wBThfmQjw76UvzUlHHrXoEC9K9L+EX/IU13/sHxf+jhXmleg/C7zP7S1rZNLEfsMeTFsBP70cHepqZpyTSFzcurPbqgupLmK2uZLaDz7hInaCHcq+ZJj5VJYgfXms/wD0r/n9u/zg/wDjdNkklhjlll1C6SKJGkkdjDhUUbixxF2rk9hIn28RfD73z2l2t4L4yxajexh7/Z5rrv3AqI2ZdoyQADgdBwM1sViQTvcxiWG/vWjJIBZUjOR/syQhv0qT/Sv+f27/ADg/+N0/YyYe2iXrn7+n/wDX4v8A6KlqzWDcfad9j/pt3/x9L3h4/dSf9M6n/wBK/wCf27/OD/43T9hIPbxNesvW5JIra1YSTxW7X9ql/LbGRZI7QltxDRfOBnaGI6AnkdQz/Sv+f27/ADg/+N1HPcNaxtNPqV1HGCq7iYjlmO1VULESSTwABS9jJB7eJWF1qjaJHDCL+a9dX8yRQq3kVhJLOIrjM5QGQqoA5yC2SPWG3utckuPCLS22qR2xhtY5TuhKTyS2UjSyXf73f8pC4BX1PUgVaa/iS2hvDqtybaYoIpE8txIX4UKqQliT9P5UjajAstvA2qXiy3PlCFWjwHMo3IoYwbcn0JzT9kw9tE6Gisj/AEr/AJ/bv84P/jdH+lf8/t3+cH/xul7CQe3iXr7/AI9Zv96D/wBHJVk9T9TWDefafs0uby7PzQ8Ew/8APVP+mdWD9qyf9Nu+vrB/8bo9hKwe3ia1c34puL2FLEWs1xFlL1z5LTxh3VE8tUeAEmXJJjRvlbnPSrv+lf8AP7d/nB/8bqvdX0dige71O7iQh23FVdQEGWLGOA4A96FRktR+2iT20ckms3Esb36W9taIJ0nnuDFLd3W2QKInYxjy1HO0dZMfw1sVgRX0U08ltFq07zxgs0amLIC7d2CYsHGRuweM84qx/pX/AD+3f5wf/G6PYyYvbRNeq0H/AB8al/12g/8ARCVR/wBK/wCf27/OD/43UEP2nz9Q/wBNu/8AWw94ef3Kf9M6FQkHt4m9XKGXUU1TU1e8kktUi1N7t0nvQlvGTH9mjMax7UZeRlGJIyx9tT/Sv+f27/OD/wCN1UfVLVHuY31mcPapI84zH8ix7d/IhwSuRuAyRn3o9jJD9tFkVvdXb6DPG15JDdGS8khuJnuij2kV2uTHcFDMEKsEViC3OecZrPF9rcf9ltMl1JbM95JaRLc3yS3IN6EhQTLGJHITlRIFBByc9V2hdkwG6Go3ogAYl2RVI2nafkaEP/47UX9p2pW1b+2J9t02yBv3YV23+VtJMOAc/LzjnjrTVJ3F7aJ0R6muP+JP/In6v/120/8A9KUrZ/0r/n9u/wA4P/jdct4/8/8A4RXVN91cSDzbH5ZDFtP+kJ12oD+tONFqSY1Wi9Dw+ilorqKEopaKAPcfhT/yLVx/2E7j/wBAjrvq8z+Gvnf8I/PsuZ4x/aM/yxmPbnYnPzoT+tdr/pX/AD+3f5wf/G65Z0pOVyXWitGV9Vn1ZNU0VYYL4WKXlqrvamLyp2mEiutwDIH2oACPlxk5/hAO/WC92I7iO1bUrwXEiq6xhUY7WJUFmWEqAcHqR0qf/Sv+f27/ADg/+N1HsZWF7aJpXP8Ax7Xf/XvP/wCgNSxf6qD/AK5R/wDoIrIuPtP2e6/027/1E3Uwf3D/ANM6dF9p8qH/AE27/wBVH3g/uj/pnT9jKwe3ibNc94hmuImhVZ72GNrDUWtTZGYNJqi+V9njcxA5zltqng85zji1/pX/AD+3f5wf/G6r3N9HZCM3Wq3EIkLBN5i524JPyxHgcZJ4GevNHsZIft4kWtXurGC0+xw3rLBNbm+ksPLV/tMc8KG2IkdW2HLFiAQcAZwTi7axO2sanNHJei1t4ltzHNcXEkMt3ORO7JHIxQBF2qNoxliP4ahuLsWvk/aNTuUMzFIh+6ZnIGTtVIicDucYFNjvY5p5rWLVZ3uId3mRq0OV2kK2CYsHBIDYJweuKfspC9tE36KyP9K/5/bv84P/AI3R/pX/AD+3f5wf/G6XsJB7eJft/wDWaj/19/8AtCKrFYMH2nff/wCm3f8Ax9esPP7mL/pnU/8ApX/P7d/nB/8AG6boSD28TQu2dLS9ePzfMS2nZPs6B5twjYjykbgt6D1rjIrq/OnPJLfXBeC73xJ52qNDfE2S/uIbiMrcbt2SQcgMcAEDA6JmuEV3a+vAqKWYjyTgAZJwIs1R/tmw2PIdauAqSeU+5drK+zzcFGgDcL8xOMAc0lRkh+2izo4md4oXeNo3eNGeNiC0bFQShI7jpT6yAbhgrLfXRVgGUhoCCCMggiOj/Sv+f27/ADg/+N0ewkL28S9ef6j/ALb2n/pRHVn1rBu/tPk/8ft2f31r1MP/AD3T/pnVj/Sv+f27/OD/AON0/YSsHt4l2+Exsr8QTi3m+yz+VOVLCF9hxIVAJ469K5YXl3Dp5nmvrqGBddsBZFJ7m4+0Wwa3FwrTTxCZowfNPQd+SBztO80aPJJqFykcas7uzQBVVRksxMfQVV/tS0+zSXn9szi2jkSGSRzGu2RyoVGVoQ2TkY4756c0lRkg9tFkPiS+nzaiyuLlPL+2iTyTcxB5kWFkSJolO6XnMat8jZOT8vEmnz3smr7WlvjJ5urjUYJ/MFvBAsi/YyiMPLBIxgr1y2c44mubxbPyzdapcxCRtil/L25yB8xWIgDkcnA5p32km5ezGp3BukhW4eHdDvWJm2ByPK6E01SdrB7aJuVw3xR/5FWT/sI2X/s9dF/pX/P7d/nB/wDG64/4j+d/wjMm+5uJB9vs/lkMW3+Pn5UB/WhUWncarRbseLUUUtdZQV6B8MZYYtR1kyyRxg2UYBkZVBPmjgbq4CvQvhd/yEta/wCvGP8A9GimZz+FnqH2ux/5+rb/AL/R/wCNR3FxYywXEXn2UnmRSR7JplEThgQVcqc4PQ4FW8D0FV725Sys727dCy2tvLOVHBbYpbaD71Lsci3KemmC0hmSa9tf3lw8sUKXTTR20ZVVESSTneRwW6D73AwKu/a7H/n6tv8Av9H/AI1Fp1093DI0pi8+KTy5o44biHymKK4VkuQHzggg45BBq5gego0BlKe7st9l/pVvxdKT+9j/AOeUnvU32ux/5+rb/v8AR/40XAG+x4H/AB9L/wCipKnwPQU9AIPtdj/z9W3/AH+j/wAaqXzwTpZvb3dl51pe297Gs06rHIY9ylGZMkZDHBweccVpYHoKqX1xLbparAkTT3d5BZxGbd5SNIGYu4T5iAAeAR9aTsNGYsUa2CWckmkXIWT7TiS7lgX7RJNLO5VogWAUsNh6nnOKmgRFbRxc6nbTpp1q43NMC81448vzW3Hoq7guST82T7q+qzrptndC3Q3VzefYBGizSxLOsskTsqxAyFfkYgAZ6DjqI49YnlkhaJLSW0W402znkUTJI816ud8Kv0CkqCG569NvK0Hqan2ux/5+rb/v9H/jR9rsf+fq2/7/AEf+NT4HoKMD0FVoSUby7sjbSgXNuTuh6Sx/89U96sG8scn/AEq26/8APaP/ABpt4B9ml4H3of8A0alWCBk8DqaNAIPtdj/z9W3/AH+j/wAaq3z2t3FFbi9tVge4he8BmTMlvGfMMS4P8RCg+2fWtHA9BVDVLi9tLYz2gtWcMkaxXCSsZppXWOKOMxsMEk85z69qWg0U4be0TVGvjd2kcMZvXiiS9eQPLdlTJIY3widCSFzknPHQ6n2ux/5+rb/v9H/jVC21O4m1S4sJIoFjjN0qOvmZZoPK5SRv3bZ3Hco5XHPWtbA9BQrWB+ZB9rsf+fq2/wC/0f8AjUMN3Zedf/6Vb8yw4/ex8/uUHrV3A9BUEIHn6hwP9bD/AOiEp6CD7XY/8/Vt/wB/o/8AGsI2Sm81C4e60uWG5F9uilunEc63Bj2o0YG1CNvzMpJbjPt0mB6CsM675N7qEV1HDHaWou9rguHcwGJVCSP+6ZmLYKjlcc9al2KjfoPtjJb2kkH2ywk8w3Uiq1/OPIEjqUgin5l2gbvm6g4wMdKscE8cGnWn2vS5LOK5lu7qJrxwzMbjz4YvNKMzKnUlsFiBk466Wn3lxfac1z/oK3CyXUT7JDLaxtDKyZZ1OcYGTyPyNUW15o4tK3pZrPdzxmbfIY4/sT3X2VLiFZCH+fhkB7ZJ6cmgamz9ssf+fq3/AO/0f+Ncv49uLWTwtqaRzwu5lscKkiMxxcIegOa67A9K5X4gY/4RXVP+u1j/AOlCVSsEfiR4hRiiimdgUYoooA9e+G9xbRaBOsk8KN/aE52vIinGxOcMa7T7ZY/8/Vt/3+j/AMa5D4aY/wCEfn/7CM//AKAldtgegqWck/iZj3iwT3lncQ3VhEYnty9yt263JiidnaDylPlsrZI5PG48Vo/bLH/n6tv+/wBH/jVK51MwajFZARpEsdrJcTSxXDrm5laGONWiGxScHlj1IGO41MD0H5UkS/MqT3dj5Fz/AKVbf6ib/ltH/cPvTorux8qH/Srb/Vx/8to/7o96kuAPs91wP9RN/wCgGnRAeVDwP9VH/wCgiqER/a7H/n6tv+/0f+NZmpot04e1vdOBksL7TZhcTYCxXWwmVNmcldvQ4znqMc7WB6CszUr+6tW2WsVu7x2N7qU32guFMNrsBjTZ/E27qeBjoc8S7dRx30KN9byXElrLb6jZwyW0FxZQut7LGyRO0LR3B8rG5xt+ZD8pz14qWzhS3uYWlvrBre0Op/ZTHMPOl+3zicmYHCjbjHBOevGMVPqGq/ZXsURUVZ7aS+mmmhuJUhtozGCWW3GR94ZJIAx3qS1vbmS+urS6iSHHnyWa+TKDPbxSBPNWYsY2GCpIAGNwo0uPWxa+12P/AD9W3/f6P/Gj7XY/8/Vt/wB/o/8AGp8D0FGB6Cq0JKUF3Zb77/Srfm5yP3sfP7mP3qb7XY/8/Vt/3+j/AMaIAN9/wP8Aj6/9oxVPgego0Ah+2WP/AD9W/wD3+j/xrAu7H7Rawp9vsGuXnv7q8c3TwbprqMxKY5YwX2oMLtIwwAB6YPSMG2ts279p2bgSu7HG4DnHrWA+s38SlXjtGZ727toZ4ILySIxWcQeeUwxlpDhsqMEDgntgy7FRv0NeK5tEihR7y1Z0ijR2V4kVmVQCwQHAB7Cnfa7H/n6tv+/0f+NSxukscUiMjJJGkisnKsrKGDLnse1OwPQVRJRu7uyMPF1b/wCuteksfaZPerH2yx/5+rb/AL/R/wCNJdgeSOB/r7X/ANHpU+B6CjoBSu5rWe1vII7yzWSa3miRpXikjVnQqC6E8j1FYDaSZLOeD+17SBi8rwRGZbxFaSKOHdLPcgSlhtbaccBsDgcdPcymC2upwqM0MEsqq7rGrFELBWduAD61jJrGoSafcXiw2fnW9yIPJljuopLhnSNkiSF/3iuxYgZznAbGDxOhSv0JdQkubpEt1udKa2aY/a1ku2ie5t0ClEJRGA3HO8AdAAD8xw22t4rfU5r86vbyxTRXIkjf7OsnmSyo6jzF5KqFCj2Aqxqd9d2jbLaGBnjsLzUpvtBcAw2pQGNDH/Ec9TwMdDniKy1aa71Ge0aGJIAtw0LfvA7CIxgYkP7tidx3BeUxg9aFYNbGj9rsf+fq2/7/AEf+Ncj8RLi1k8NSLHPC7fb7M7UkRjgb+cA12uB6CuO+I4H/AAjMn/YQsv8A2pTYQ+JHi1FLRVHYFd/8MWlXUdY8uISH7FHkGQR4HmjnJBrgK9C+Fv8AyEta/wCvGP8A9Gigifws9Q8y8/59E/8AAlf/AIimv9olSSKSxjeOVGjkRrhSrow2lSNnerNNkSOSORJQTGyMsgG4EqRyBs+b8qk5CpbwPZo0dvp6xqzGR912zu7EBdzPIpY8ADk9vapvMvP+fRP/AAJX/wCIqro1u0FmXZJImu5pbvyJHkc28cmBHF+8JIIULu9ya0aAZRnkvN9l/oqf8fS4/wBJX/nlJ/sVP5l5/wA+if8AgSv/AMRRcffsf+vpf/RUlT0wIPMvP+fRP/Alf/iKiuIpLuPyZ7BHTekgAuyrK6HcroyKGBB6EGrlZ+rBzBa/LO1v9utft62wlMhtMtv4h/eYzt3Y5xmpY1uNNhEY1g/sxBGqwIipeOmzyWZ0KFQCGBJOQQTnkmkTT4I5IJk0mFHt1jSIrdEKvlhghKbdpZcnBIJGetZ8h1A6PY2+LtWW5ha6MsV3JIunPPNsEhhIlJACBwG3Y69aWP7W914bkFtPBMqxrdwKt9hIDHKuWlkYw7B8pKkbs4Gcii5Vjb8y8/59E/8AAlf/AIijzLz/AJ9E/wDAlf8A4ip6KZBRvJLz7NLm1QfND/y8qf8Alqn+xVgyXmT/AKInX/n5X/4ikvP+PaX/AHof/RqVYPU/U0AV/MvP+fRP/Alf/iKY6TzNAz2CO1vKJ4c3I+SQKyBwAmM4Jx9atVmazai7gggWORp550t45Y3mT7MknzSzExMBwoO3PfHrQND47NYZ2u49MRZmaVt/2tioabBkZEK7AWx8xAGas+Zef8+if+BK/wDxFUobRP7YubiOKWKK3thEWaScrc3Fxh2ba7FSEUAcDqx9K1KEDIPMvP8An0T/AMCV/wDiKghkvPOv/wDRU/1sOf8ASV4/cp/sVeqCH/X6h/11h/8ARCUxB5l5/wA+if8AgSv/AMRVVLKNJ3uV0uLzZGlYlrosm6UgyMsbqUBbA3EKM1o1zKi7Gq6s8qXpt3XUVbKXxCJ+6ERfyyEZDg+WI8MATkntLKRpvp8Dwy27aVEIJFnSSJLto0YTyCWQEIB1IB/TocF/2NTFHC2mRyJE6Sp590ZnVkcSKd8ql+CM9aq6czJpksF0b1MnUWjlijuw5thN8rQ7w0y8MAiklsDvjIzA+pmDw4wt7qdIdOhXyJ479Xkv0ljRxIyFSGC8hnyvXrmgZ03mXv8Az6J/4Er/APEVy/j17k+FtTD26ovnWOWE4cj/AEhP4Qo/nXYHqfrXK/ED/kVNU/67WP8A6UJVIUfiR4fRQaOaZ2BRRxRQB698N3uF0CcRwLIv9oT/ADGYJzsTjBU12nmXv/Pon/gSv/xFch8NP+Ren/7CM/8A6AldtUs5J/EyhLafaJormXTI3mh2bHN0QP3beYm9VXadp5XIODyKsebe/wDPon/gSv8A8RVK+tFub/SdscoZJPtNxcI8yqsNt8yw/KwTLsR26Bq1KSJZUnkvPIuf9ET/AFE3/Lyv9w/7FOjkvPKh/wBET/Vx/wDLyv8AdH+xUtx/x73X/XCb/wBANLF/qof+uUf/AKCKYiPzLz/n0T/wJX/4iq9zaC+8r7Tpscvlb9mbor8r43K2xRlTgbgcg46cVfrD11Z2aIBL1ozY34thZefldTPl/Z2cwcj+LaW465pMa3LUthFcEedpkcmJJZebx+TLtLqQBypwMr046U+K3MM0tzHp6iaUMrSNeM5Cs28qgcEKCeSAB+lZurSag8mnlIZZo4IrlZYfKvQk+oIYQq5tipwRv2Mcr1POOJ7Iav8A21fS3dtNHDNZsI2Fwklsix3BESoqH7xHLcZyfQCjS4+hp+Zef8+if+BK/wDxFHmXn/Pon/gSv/xFT0UySjBJeb77/RE/4+ef9JXj9zH/ALFT+Zef8+if+BK//EUQffv/APr6/wDaMVT02BB5l72tF/8AAlf/AIiqklhFJBb2j6XH5Fvu8hFu3QoGBVgGQBsMCQ3POec1osqurI33XUq3JHykYPI5rlJ7a8itYJYYLhba7vby5ktXGoTbIo4THaRSJA/nDeRub5sBmGemKl+hUdTpFa6RVRbKNVRQqqtwoCqowAAE6Cl8y8/59E/8CV/+IqSEyNDbtJH5cjRRGSMtuMblQSm7vjpmn0ySjdSXnkjNqg/fWv8Ay8r/AM9k/wBip/MvP+fRP/Alf/iKLv8A1P8A23tf/R6VP60+gFWXz5o5YZrGKSKVGjkR7hSrowwVI2VTOk2xEYOmHdFI06uNRuRMJGjERcyg7ydoCjLcDir18ZRZX/lLM0v2W48sWxAnL7CB5RPG70rmFEq6a9vNHfebLfFbO6gj1VYLYeTEWuFjbM42nOA2cuTjCk7ZKRuTWENzjztMSQh5JPmvZOfMCq6nA5U7VyvQ46U+OzWGdrqLTY1mcynd9rYqplIaQxoV2AsQC2AM1Q1lpZmARNQaNLTUIrf7NHcof7UxEYHPlY4wTtJ+XOfSmaaNQGs3TTrdbXF6Jd4uAqENFsLs/wC4ZThvJ2cgE5z2EHQ2/MvP+fRP/Alf/iK5H4iPct4bkEkCov2+z+YTB+fn4wFFdrXH/Ef/AJFmT/sIWX/s9DCHxI8WopaKs6xK9F+FNvHPqetq7SgLYREeVI8Z/wBaByUNed16N8J54INT1tpXCBrCIAkE5Pmj0FRUvyuxS13PWv7Otv8Anpd/+BU3/wAVTJrTT7eGa4nnuo4YI3llka6n2oiDczHB7VN9v0//AJ+E/wC+X/8AiagvbizurO9to71IZJ4JYUl8tn2F1K5KMMGuHmn5lcsewy1i029SSSCW/wD3chhlSaW7hljkCq+145cMDgg9OhHrU/8AZ1t/z0u//Aqb/wCKqhoy2emW0sDXcG17hpo4oFuDFArKqlEaYtIckFjlurYHArS+36f/AM/Cf98v/wDE03KfRsOWPYq3Gn2wew/eXfN2o/4+Zv8AnlL/ALVT/wBnW3/PS7/8Cpv/AIqo7i+sC9hideLtSflfp5UvtU/2/T/+fhP++X/+Jocp+Ycsewz+zrb/AJ6Xf/gVN/8AFVDcwabZxedPNeqpdIkCT3Mkkkkh2qkaRksWPYAVZ+36f/z8J/3y/wD8TVLUZLW7jtTb3kMdxaXcF5AZY5XiZ4wylHCgHBDEcH+WCc0/MOWPYUDR/sJ1L7XdfYliacym4uRhFyDlCd2QeMYznjGahSfQZJbaBLu9L3KwPEfNvBHm4jMsSPIRsDMBkAkH8+YBa2z2UNjLqu1YpDdrJbRFXa8eWaZy6zK6GMFgUGMjbnPpBDptik2jNJfQMunxWJllVLlZ7qa0QpH5iqRDgdjsJwMZ707y7sOWPY3f7Otv+el3/wCBU3/xVH9nW3/PS7/8Cpv/AIqn/b9P/wCfhP8Avl//AImj7fp//Pwn/fL/APxNTzT8w5Y9ipe6fbC2lIku/vQ9bmY/8tU/2qsnTrbJ/eXfX/n6m/8Aiqhvb6wNtKBOpO6H+F/+eqH0qyb/AE/J/wBITr/df/4mnzTt1Dlj2I/7Otv+el3/AOBU3/xVVL3+x9PEZuri+TzFlcBJbuUiOEBpJGEWSEXI3E8DPvV77fp//Pwn/fL/APxNY+uW9tqy2ix31ughE4xNHOdkkgULPGYip3Jg4ByDnkcUKU763Dlj2LiJpcl01mJr8TiN5lDyXiJLGhVWaKR8IwBZQcE9as/2dbf89Lv/AMCpv/iqzYEgTVn1GS9tsfZntj5Uc4luQ3l7WuNxKDbt42qOv4Vq/b9P/wCfhP8Avl//AImjmn3Ycsewz+zrb/npd/8AgVN/8VUEOn2xn1AeZd8Sw/8ALzN/zwQ+tWvt+n/8/Cf98v8A/E1BDfWHn6ifPXmWHHyv/wA8EHpQpT8w5Y9iT+zrb/npd/8AgVN/8VWe9z4ejkuonvbxWthKZCZb3YWhKLIkbgbWZSyggEnLAVp/b9P/AOfhP++X/wDia519OtnvdUunvbKVLtLoFJIbkeeJSjRxz7WwBHtG1lAJwCTkcilPrcOWPY1U/sZ7Wa9+1XiW8BlE7Sz3UbxPEdrJJG+HDD0xnn35a7aPFHZyTT6jD9tuEtLdJ3vY5nmc7QpicBwPcgD35qgLG2GmXenf2hb4vJJbu4cpdsftRmiljCs7l9gC7Wy2T1yKjGlWpitS2tSxzw3CSqkSl7aKIXaXZhiFyjyD7oAO/sOMDFO8u7Fyx7G//Z1t/wA9Lv8A8Cpv/iq5P4iWcEPhLVZFe4JE1gMSTyuvNwg5Vjiuv+36f/z8J/3y/wD8TXJfEW7s5fCWqxxzKzmawIADDpcoe4pwlPmV7j5Y9jwijvRzR3ruJDvRRzmjigD2j4YWkM/h2d3ecEalOuIppI1+4nZTiu5/s61/56Xn/gVP/wDFVxHwvurWHw5Oksqox1K4OCGPGxOeBXdfb9P/AOfhP++X/wDia4KjlzMrlT6FGb+xre5itJbm+E0nk4AlvGRPPcxRebIuUXeQVXJGSKt/2ba/89Lz/wACp/8A4qsi/tre71Syv01CBFt/suwtFOZoPJlaRxFtIQiQHadynHUc1tf2hp//AD8J/wB8yf8AxNRzStuw5Y9ivcadbC3uj5l3xBMebqb+4f8Aap8WnW3lQ/vLv/VR/wDL1N/dH+1RcX+nm3ugLhcmCYfdfuh9qdFf6f5UH+kJ/qo/4X/uj/ZpqU7aXDlj2D+zrb/npd/+BU3/AMVVS8/sfTxGbq5vk8xZHASW7lKxRYMkriLJCLkbmPAzV77fp/8Az8J/3y//AMTWVqiQ3rrJbX9vEz2N7plx50Msg+z3ZQs8e3Hzrt4zxz7U+afmHLHsWriPTLZrdJJr9pLjd5McEt3PI6rgs+2HcdoyMnpyPWmQnRri5ltIbm9aaPzuDNdrG/kuI5fKkbCNsJAbBOCaz9Qs4b17R01G3ia2ins4WCXYeK3domSZDG6/vU2cZ4OenHM9lDb211HJJqED21p/aX2JVhlWU/b5hO/nscqduMLgDOcmneXdhyx7Gp/Z1t/z0u//AAKm/wDiqP7Otv8Anpd/+BU3/wAVT/t+n/8APwn/AHy//wATR9v0/wD5+E/75f8A+JqeafmHLHsVbfT7Yyah+8u+LrH/AB8zf88Yj61P/Z1t/wA9Lv8A8Cpv/iqjt76wEmoZuF5usj5X6eTEPSp/t+n/APPwn/fL/wDxNU5T8w5Y9iNrC1RXcvekKpYhLi4ZiAM4VVOSfSsxr7w8iytJcarGY5WikjkXUlmVlhFwx8orvwFwzHGAD71r/b9P/wCfhP8AvmT/AOJrnbzTbe6sreA6hbPN9pvLy8aWK4CTXNyCPNUxMrjZnCDdjAwenCUp9bhyx7G8thZuqOk10yOqujLdTEMrDII+al/s62/56Xf/AIFTf/FURXllHFDG94JHjjjR5GRlMjKoBchVxz1p/wBv0/8A5+E/75f/AOJo5p+YcsexVu9PthBnzLv/AF9oObmY9Z4x61Y/s62/56Xf/gVN/wDFVDeX1gYMC4T/AF9p/C/aeM+lWft+n/8APwn/AHy//wATRzTt1Dlj2IJbOwgimnmnukhhjeWV2upwqRoCzMeegFUmudAS1mvJLu/jhhmjtpRM97HMk0gVlQwuBJkhlYfL0OenS7d3NncWt3bx3qxSTwSwpL5bP5bOpUNsYYOPSudGi2jWM1t/a32Zy07W0VmjvawedHHE3F2skhJ2k53DG8gcU05dWw5Y9jcvE0uwVXuptQSMkhnSS8kSMAgFpWjyFXkZJwP6KI9Ka8l09bm7N3FAtzJELi5OyJm2gls7c+2c8g9DzU1F7i8SGFL+wNstwXninhuQbmJApjSVoyP4sl8AA8DgZDLbW1ja6nJqC6rNIksV0JIJkQjzbiVJSQ6xB9o2gAEngAZwMUrz7sOWPY0v7Otv+el3/wCBU3/xVcZ8S7OGHwxI6PcE/wBoWQxJPI687/4WOK7b7fp//Pwn/fL/APxNcX8TLq0m8MOkUqu39oWRwAw4G/1FVBz5le4uVdjxCil+lHNegQJzivSvhEf+JpruP+gfF/6OFea9q9G+E5uBqet+UkTH7BFnzXZBjzR0Kq1ZVPhZUdz2fLep/OoL2a8htLyW0i8+6jgke3hJIEkgXKr1H86TdqP/ADys/wDv/N/8ZprrfSpJFJb2TxyIySK08xDKwwQf3NedY0K2j393exXwuM+ZaXjWu8wSWplXyYpgxgkZmUjdgjPbPfA08t6n86pW8FzaRJDbWdhDCpYqkc0qrljkn/U9T3NS7tR/55Wf/f8Am/8AjNOwBck79P5P/H4vf/pjLVjLep/Os+4bUN9hmK0/4+1xieXr5Uv/AEyqxu1H/nlZ/wDf+b/4zQ0BYy3qfzqjqV3dW0dmlu0azXl9b2SSTBnji8wMxcoGUngEAbhyRU27Uf8AnlZ/9/5v/jNRXEFxdxPBc2lhNC5Uskk0rLlTuB/1PUHkGlYDPk1yWHRYr6ZrZLuaWeyiLsy2huYpZYvNYk5CfIXxu9s5NSWeq31zN4cObVrTU9LlupHi8wyfaI0iZtvO0L8xGOT78c24raaDIhstPjHkR2xEcsqjyY922PAh6DJx9aiOmr51rc/2dp3n2kaw2snmzBoY1GAiYi4FOyA08t6n86Mt6n86r7tR/wCeVn/3/m/+M0btR/55Wf8A3/m/+M0rAF8T9ll5P3oP/RyVZJOTyevrWbetqP2aXMVpjdD0nl/56p6xVZLajk/ubPr/AM95v/jNO2gFjLep/OsTX9V1DTVtvsgjZnju55d0TzMscCodzojqRHk4kfnbxwc8ae7Uf+eVn/3/AJv/AIzVa6smvhELvT9NuBESY/Nklbbu4IH7noe470Ja6gUrLWb641iezcwfYz9rW2kRH2ym38v/AFM+4qzct5g2Ltx1OK3st6n86zo7Ew3El5Fp+mJcy5DzJJIHO7GeRD3wM+uKs7tR/wCeVn/3/m/+M0NLoBYy3qfzqvAT9o1Lk/66H/0QlG7Uf+eVn/3/AJv/AIzVeFtQ8/Uf3Vp/rYc/v5f+eCf9MqEtwNDJ9T+dc5Lq3iJb68so7UebJFqR09HgdVP2Xy/Kk89pBG4cNkj5cHAz67e7Uf8Anjaf9/5v/jNVDpwZ7xzpuml7tdl0xklLSrnO1j5OcZ5oSAg/ta6GkzXKsGvYr1NOk+0Q+SsVxJcpbfvI45XGF3A8SHPqM8UJvEtxbvb2k01itzHqv2S7lfdHHJai6S33Qxl/vndz8xA2N7Vrf2cghWD+zNL8kQy24jLyFPKlYPIpBh/iIBPuM1IlrLHBFbR2OnrbxukkcSyy7FdH80OB5PXPzZ9eaegF/Lep/OuQ+JJP/CH6tyf9dp//AKUx10+7Uv8Anjaf9/5v/jNcj8RTenwlqokjt1TzrDJjlkZv+PlMYDRgfrTpr3kJng/pR3pTjvRzXomYneil4zRQB7h8KiR4auOT/wAhO4/9Ajrvct6n8688+Fxux4cn8mOBk/tK45llkRs7E7LGw/Wu63al/wA8bP8A8CJv/jNefUXvs0Rm6lqmq2V/axrATZSS6dCG8iSTz3urgwSDz1cKhjyrAFTuz+W3k+p/OqD2kslxDdyWOnvcwriGVpZS6Dn7uYfc8+9T7tS/542f/gRN/wDGazGPuSfs13yf+Pef/wBANOiJ8qDk/wCqj7/7IqrcNqP2e6zDaY8ibOJ5f7h/6Y06JtR8qD91af6qP/lvN/dH/TKnbQC3lvU/nWRq+o6haP5do1urRabqOqytco7rIln5Y8lQrrjdu5bnGOhzV/dqP/PKz/7/AM3/AMZqvc2b3vk/arDTZ/JffF5skj7GPXGYe/cf4UWApa1r406PTtkkEc119nuH+2EhUtWljjcLgjLndgemCe2DYtL3UTqV1Z3uYw4uZ9PVYVCS20Mqp5gnSZiThkyDGv3uM4qf7POUmj+xaeY5pvtEq+bKVebcH3sPJ65AP4U2Gze3lnuIbDTo57gkzSrLKHfJ3HLeT6807IDQy3qfzoy3qfzqvu1H/nlZ/wDf+b/4zRu1H/nlZ/8Af+b/AOM1NgC3J8zUeT/x9+v/AEwiqxlvU/nWfbtqHmahiK0/4++f38vXyYv+mVWN2o/88rP/AL/zf/GapoB9zM0Ftdz7kBggmmBmcpECiFv3jDovqa5ZPEmrmGOOSPZdvcOHxYymaC3jtFumZ7QzdycKfM5AzjPB6RhfurI9vZMjqUdWmlZWVhgqQYcYNUv7ItvI+zf2RpPkeZ53ll5CPMC7NxzDnp8v046cUkktwNSGZZoYJo5N8c0UcqOuQHV1DBgDzzT8t6n86rA6gAAIbMAAAATygADgAAQ0u7Uf+eVn/wB/5v8A4zRYAvC3kdT/AK+07/8ATxHVnJ9T+dZ142oeRzFaY8+06Ty/894/+mVWN2o/88rP/v8Azf8Axmi2gDruW6itbyW1i865jgle3hLYEsqqSqZ9zWAus6w9nfujxfa7O9S1hjmsZ4nv5JIIp0gWBpt6N8xDHJwBuxjNbbi+kR43t7JkkVkdTPMQysMEH9zVJ9HtpI7eFtJ0sx27SSQL5kw8t5eHZSIs5buc80JJbgR69q2oab9l+yiNi0V1cT7o3nKJB5fzSBHUrFyd7844+U54bY6xe3Or3NnJ5ItD9tFq6I4Ev2Z40/cz7yrnlvMGxdpGOetWZdMiuMedpelyYlab53lb94wVWJzD3Crkd8D0p8ViYbiW7i0/TY7mbd5kySSB23YLciHvgZ9cU1YDRy3qfzriPigT/wAIrJ1P/Exsf/Z66/dqP/PKz/7/AM3/AMZri/iWb0+GHEkduq/2hZcxyyM2cvjho1H61VNe+hPY8QAyD2Hr/SjA9f508A7SXJx2Gec03C+h/MV6ljAZwRXpXwiB/tTXf+wfF/6OFebdufwr0X4TwxTanrYfdgWERG2SSM580d4yKwqfCzSO57PzWP4gRntbMpb3s8sWo2E8a2ayvgRXEcjtIsZAIChsZz+dX/sVp6Tf+BNz/wDHKrXh0qxW3a4+1AXFxDax+XJeyfvJXEa7tj4AyRknArz1a5oZtpa3v9tGdrW5SQXupy3N3JkRTWE0QFtCGzztOz5ccFD0zluk5rNjOlS3t1YJ9qNxaxRTS5lvVj2yMyjY7PgnjnGcVZ+xWnpN/wCBNz/8codgFuc79P8A+vxf/RUtWOazriztQ9hxNzdqP+Pi5/55S/7dWPsVp6Tf+BNz/wDHKbtYCzzWXrcUsttagQS3ECX9rJfQQjc81qpbcuwEbgDtJHcDoeht/YrT0m/8Cbn/AOOVXuxptlEssq3Tb5Y4Io4Zrp5ZZZDhURRJ1P8ATPaloBl4ng0JLWfSLq7lQAw20kbTIiT3EvkrLtYk+Uu3eBkjgDJPFePTLxdQ0J7dr2Tyk0wzT3lrLG8VvbQtHIonaXA8z+JNhOTnOBkbCyabJZR30EOoTxSfdjge7afcGKMrRtICCpBDZ9PzYt1oTyaRFG9y7arEZrTbLeY8sRmUNLl/lyAQM9wR24dwNjmjmq32K09Jv/Am5/8AjlH2K09Jv/Am5/8AjlLQAvv+PWb/AHoP/RyVZOcn6ms69s7UW0pAm+9D/wAvFyf+Wqer1ZNla5PE3X/n5uf/AI5RpYCxzXPeJbG5u47b7Ms0k4ivIYI1t2miWeYIEnLrIgR0IyrknAJ4z12PsVp6Tf8AgTc//HKpX02kad5YnW8YvHNORBJeSmO3g2+bNIFk4Rcrn69DQrXArWlrrSa+91dwI0UlhcW4uI7lnRY0lhMKeUYxhjhmbk8secKBW/zWSkunPepY/Z9RWSSOaaKV5LnyJY4tgZ0kWY8fMuMgdau/YrT0m/8AAm5/+OUOwFnmq8GftGpf9doP/RCUn2K09Jv/AAJuf/jlV4bO18/UeJuJYf8Al4uf+eCH+/QragXZgvkzbxKV8t9wg3+aRjkR7Pmz6Y5rixZ38mmadC+m6i/ladqdpaRMjrJa6i8ytbzuXbIAHR8nGDzzz1r2tlGjyOJgiKzsRcXbEADJwFcn9KzG1LQFtrS6C6g0VzDNdAIb0yQ20LBJJp035VVJGe/txw0AtoZLbVtela01J1lttOJk8qV45p4WlSTyDI2MYZcAYGAfSqYgktZtfkXSrq+tJUuJpopbOKO4nunugyQxSqcvFyxJIOAo6521rRvpEt9Pp0ZuGuIII7iXE135QRyAF8zzMbuQSPRh61WkvdIhmuYbi31OFreFpyZDdFZUEqwL5WyUklmICDHP4cAFzRoWg0yyhImBRZMiaOSIqWkZtixy/MEXOEz2Arn/AIkf8ifq3/XbT/8A0pjro4be1miSXybyLdn93cTXKSrg4+ZRKf51y3xFtrePwlqroJNwmsMbpp3HNyg+67kfpVQs5r1F0PCPSjFLRXomQlFLRQB7f8Kv+RauP+wncf8AoCV3vNeefC+2gl8O3DOJMjUrgfLNMgxsTtGwFd19itP7s3/gTdf/AByvOq/GzVbHNvbzF9YRbDU3s216zvLmOaOZjd2ogSOTyxI2WAcbio7DgYODu6NDcQaZZRTpIjqJtscrbnihaV2ijY5PKqVB57e1VWvNCW31W5P23ytMlaG5wdQLl1RZP3SbtzDBGCBj8OavpaWUiRyKJtrorrm5uvusNw/5aVF9Bk1z/wAe13/17z/+gGnRZ8qD/rlH/wCgiqlxZWn2e64m4gmP/Hzc/wBw+slOisrXyoOJv9VH/wAvNz/dH/TSjSwFzmuf8Q2txcNDi0ubqI2Gow2624z5GpSeV5E7fMMYw2G/h9s86/2K09Jv/Am5/wDjlUr6bSNO8vz1vWLRzTsLeS8laOCHb5k0gWThFyM/XoaFa4FLWorq7t7JI7S6kvbeeMK/2YkPJE8TMUnDjy1bHD46Z+hdpUGpxavqTXFrlZZdQeW6kgKuEM6m2jinMh3qU6jYNu31PzXbx9MskhlljvWhlZFMsEl3JHGHZUVpCsnAJI7H9KZBPo9zdSWka3gkX7R5bvJeLDP9mkEUwhkMmDsJAP6ZxVXEa/NHNVvsVp6Tf+BNz/8AHKPsVp6Tf+BNz/8AHKnQYtvnzNR/6+//AGhFVjms+3s7UyahxNxdYH+kXP8AzxiP9+p/sVp6Tf8AgTc//HKbsA+7jaW1vIg80Zlt54w8H+uQshXdH/tDtXIixvYdMu82l6yNqumT2FvZ21xAVFv5Ilme2ErkBtrHDNyecZbnqJoNPt4Z7iYypDBFJNK5ubrCxxqWZjh88Cs1tR0GO0uryZb+JbWSOKaCVrxbkPIokQCLzMnKnd9Aem04I6bAzdB3ANhhuAbDAgjPOCD3pearfYrT0m/8Cbn/AOOUfYrT0m/8Cbn/AOOUtAFvM+R/23tP/SiOrHNZ15Z2og6S/wCvtP8Al4uT1njHd6sfYrT0m/8AAm5/+OU9LAF9E09lfwq80ZltZ4xJbjMyFkI3Rjj5vTmuPl0nUnsptkEqmS4vBptolhKkMZltoYVn8o3GYmDqzIxc43McZbFdPenSrCOKW5+1BZZ4bdPLkvZDvlcIudj8DnknA/rB9q0QXcloftm6NpozLvvTA00MfnSQpIHOXVeSMdj3GAJ22Aq65DdXdlBClrdS3sEipHILUv5k0YjYtHMHXyw56SY4wfTDLp0Gqx63qMk9qGSaW+aS6khIZICyfZo4bjzDuUjgrsGNuev37a3GjPpjasBdizWGWc7pLxZQsTMrAxtIDnIPBpstzpkFvBdTW2pxwSthnLXLCBd4jDzGOUgKSRjBPr24L9ANnmuJ+Jwz4WkHQf2hY5P4tXW/YrX0m/8AAm5/+OVxvxItreLwy7qJMjULIfNNM4wS3Z2I/Sqp250TLY8UAUKxB3HpjHAHrSf8BH/fNSrjDBAQ3ck9qMSev/jwr07nPcq4ODjkZ5r0b4USxxanrZcPzYRAbI5JP+Wo7RqTXnYHBwenavSfhJkaprnH/MPi/wDRwrKp8DNY7nrH2y2/6eP/AAFuv/jdUdT/ANOt0gguHtyLi2uGaTTryfd9nlWdVCjZ3UZ5PH5jXrP1W5vrSC2mtRAQb6whuPOV2Pkz3EcBEYQgbvm6k/ga85WuakCbhqk2oPcs0UlnFZ+Qum3isBG7SBvNJI6sf4OmPTJvfbLb/p4/8Bbr/wCN1XW5vf7XktFkhmtVtnlnCQsj2b5QQo8u8qWf5jjaMAA9D82jRoBn3F5bl7D/AF/F2p/49rr/AJ5S/wDTOp/tlt/08f8AgLdf/G6W5+/p/wD1+L/6KlqxTdgK32y2/wCnj/wFuv8A43VS/wDJvI7cRzTwz2t1DeW8jWN1KgkjyMOm1cggkH5h168VqVQ1O6ubaOyS3MaTXl9b2SSzKXSLzdzFygIyeMAZHJH4rQDOa1lGnNp9vqU8avgyynTLou7STSTXHKFSBJuwMEFQOCScqg0+x+1afefab6OW1e3eSK2tryO0kEFvJboiQsrbVAY8bj3/AL2asx6hcy6ML6S5traZDOkswgaaJmgne3zFDvDEuVG0bj1xzVWLWtQN/ZWt3F9lAi0xLwJbtKpvb1GYRGUyAoAQAvytz1IxzQGz9stv+nj/AMBbr/43R9stv+nj/wABbr/43Vmip0Azr28tzbSgef8Aeh/5drkf8tU9Y6sm8tsn/j46/wDPrdf/ABukvv8Aj1m/3oP/AEclWT1P1NPSwFb7Zbf9PH/gLdf/ABus3V7Wx1eKOCQ7UAlR3k026mmVJQFbyHIUKSOOQw9uK26xde1DVNOhWe0h3Qx295cXEnkNcAPCqvHC4V1Kq/zZfnGOnNJWuBNCLOK7ursvcM0kFtawKbO6At7eEE7FOzJ3ElifoP4at/bLb/p4/wDAW6/+N1Qtb7Uf7Te2vVMUVyk8umosMZWSKIRFi0yyl9w3cgxr7E4rYpvzEVvtlt/08f8AgLdf/G6ghvLfz9R/1/MsP/Ltdf8APBP+mdaFV4P+PjUv+u0H/ohKFbUY17yLa/lmZZNp2M9ndsqtjgsoQEj8RWAmlbbaG3Ooy7haXunTyJpV0PNs7uRZWVVYnDgg4bJHP3eK6d/N2P5WwybT5YkJCb8cbivOPWuZOt6u1jazBrNLhNJ1LVrovC5im+xzLF5MS+YCobPJycccc0KwE8On2tpdy3lne6ijPBNEsVzb3dxCjTTidn2soPsBn+WKfd2VleJq/mzTmS/ksmRmsbl0hjs2WSKExlfmXcGZuRneelW7W7vZdSuYC8MtmlssrlIWja0ndlKW7yFyGYqSzcDGB/fFZX9v3zPcKNsTT3jWWnLNat5QVNQTT3naYS/MVLAldq/eABOMl9QNTTha6farbB53xLPMdlldRxqZpGkKQx7DtQZwoya574iXMMnhLVUTztxmsMboJ0HFyh+86AfrXT6Zc3FzbzG4MbTW95e2TvEpRJTbTNF5ioScZxyMnnNc98SP+RQ1b/rvp/8A6Ux1ULc6F0PAqKU0YNekYiUv1/GjjNLgg84I/PNAHtHwvuIYvDtwr+bn+0rg/JBPIMbE7xqR+tdz9ttvS4/8Bbr/AON1xfwr/wCRbuMf9BO4/wDQErva8yr8bNlsc+9vO8fiJDfc6x0I0m9/cAwLakY3/N8oHpzz04rStriOG3t4ZXlkkiiSNnSyu41bYNuQhVsf99GqgvdQ2eIftNxZ2v8AZ94kcUywSSosD28U4DIzgs53Y4xycAeuhYyXktnZS3kQhupIInuIlBASRlyRgkkfTJx+FR0GRXF5bfZ7oYuOYJh/x63X9w+sdOivLbyoP9f/AKqP/l1uv7o/6Z1Pc/8AHtd/9e8//oDU6L/VQf8AXKP/ANBFGlgIftlt/wBPH/gLdf8Axus3UoIr51eK6uLdms7vT5z/AGfcy77W62FwmVXDjaNp5HPIPbbrG1jUL61fy7RreMxaZqOqyNcxtIJFs/LHkqFdcbt3Lc4x05o0uBDfWsd9DDbvcbYoZQ0LHSbl7iBEKGM28p+7IuMbsHr045daWsFtdLO1zcSQwHUDZQ/YLlDF9umE8vmSBTuwRhflHB5yeasajeX0UOny2TQ+fcSQLHaSwtJJcmQqzIGVxtCruLNg4xntgkF7ff2zd2E+PsxtXubRmg8pn8uREYRuJGDABhuJCnJGAQflYuhc+2W3/Tx/4C3X/wAbo+2W3/Tx/wCAt1/8bqzRS0GZ9veW4k1D/X83ef8Aj2uv+eMX/TOp/tlt/wBPH/gLdf8Axult/wDWaj/19/8AtCKrFN2AqSXNrJHLGRKRJG6ESWdy6HcCPmQpgj1Fc+dA0prW6hNxeQzXBnPmafaXdtDH5kC2wVYCHyAo7uTyeQDgdNcPcJb3T28YluEhleCJm2iSVVJRC3ucCubGr629lqr+YsV1Yz20EQl09ka6muoo2jg8h5sqdzAZ3Hgg+5F5Ab6XVsiImbptiqu57a6LNtGMsfL6+tL9stv+nj/wFuv/AI3U6eYEjEpUyhFEhQEIXx8xUHnGelOpaAZ95eW5g/5b/wCvtP8Al2uh0njPeOrH2y2/6eP/AAFuv/jdJef6j/tvaf8ApRHVn1p6WAyNU/0+1+zQ3D25M1vK7yaddz5EMqzKoUbO6jPJ4/MV47RI7s3IvJii3V1qEMJ026wl7cQeQzs45KDLELwfm+9xV/Vrm+s7VJ7UQErdWcc3nh2/czTpCwjCkfN83GTx79KzZtduba5uJ5zD/Z8V7qFgYEjY3Km0tjcCXfuwdxGMbOAwOfUWwEtpDNa2K2RvBKFF4CX0i6KP57+YoeNmPAJbIzyCOmMmsum+XHbRQ3u2FL2bULm3OkXf2Wad2VkCRRspVEIyF3HJ5OcVe0fULnVdPupftNmLqO7u7bzbZTJBH5b/AC/KzDOARk5GevGcVmf27qkcNk8rqYpo9Q1FrqKxZyNNtpY4kkaHzhjcG3k5PGOMnh9QOi+2W3/Tx/4C3X/xuuO+I9xDJ4adUEpb+0LIjfBOi8Fu8iAfrXde46HkVxfxLz/wjD46/wBo2P8ANqIW5kTLY8U+YqcgKuRyBjJpuF/vfoadg7csc+gzk/Wkyvofz/8ArV6FzCxAApU54OePQ10XhbxNceF57y6iskuxdQrAVeVogm1t+cqprCuf9dN/11k/mabH91/wofvKzL2PS/8AhbV7gZ0O1B9PtcvT/v3Va8+JhvUjjvfDFjcRqwkjWa5kdQw6MMxda87f734CpB/q1+tZ+zh2Kuzv4viRFFdPdQeGdOS7lz5kq3Miu7FQp3MI+TgAfhVr/hbOoAkHQbYY65vJf/jdeZD734mpez/7po9nF9BczPRX+Kt9MYWGiW2YZRMB9rl+bCsmP9X70/8A4W1fd9Dth6f6XL/8brzROv4U5/up9TT9lDsHMz0o/FnUAA39hWxB7i8l6+n+rqG4+KUl1C0Fz4dsZYn2lo5bmRlJUhgcGPqDyK88T7v40yT7x/D+VP2UOwuZnfzfEWCWNYZfCemPEq26qpnbYFgLGIKBF/Dk7fTJpy/EmFJbWVfDGmia1jEVvJ5774kGcKjGLPGTj6n1rz8dKaepqvZQ7C52emf8La1DOP7Btv8AwMl/+N0f8Lavc4GiWv8A4GS//G683P3ahHWl7GHYSm2ekzfFa+mjaI6HbruKEn7XKcbXD9PL9ql/4W1fHONDtSfQXkuf/Rdecv8Ac/CoU+8KfsYdh87auemf8Lavxy2hWw+t3L/8bqC4+J5uvIafw1Y3BgffF5txI/lvwcgNF7D8q89k+4P96iHo/wBRR7GHYOd2uegx/E7yJprpPDVhHc3H+tlW4cSuM5OW8rPPep/+Ft3/AG0G3Ppi7l/+N15rN94fSnRdB9TR7GHYOd2uek/8Lavc4OiWoPcG7l/+N1HH8Vr9Zbhv7Ct8zOjHN3LhdqKnXy/avNH+831q2f8AVv8A7lHsYdgc2j0OT4rXUkcqPodm6OpR0+2SncrDBB/d1QT4h2axQRDwjpaw28rTwqZm2RyNjJUGLvgZ+ntXAx/f/A/yqST7i0lRh2Dnex3g+I1qJLmVfCum+ZdF2uWE7jzS7B2L/uuSSAT9Kc3xJgY3jv4U0wtejbdFpiTOM5+fMXPOD9RnqK89XqKdJ1/Cn7GHYfO72PR4firPbxRw2/h2zjhjG1EjupFVR14AjrN8Q/EK68QaTdaVJpUNstw8DmVLh5GXypFl+6UA5xjrXErSHrQqUE7pBzPYbg8ccdqMD1+tPHSmnvWjEgIbdyP/ANX1pQo3fKST27Gn9lqMdRSA7Pwx47uvDVhJp6aZDcK9zJcmSSd4iC4UbdqoR29a3B8Wb8gldCtTjri8lz9ceXXmsnf6Cmp3rKVOLd2irs7w/EGxYXIfwlpZF1Ik1wDO582RG3q75i6g8g1ei+Kd1BFFFB4ftEhRdqKl3KFUegHl15u3Rfqacn3RS9nDsHMz0eT4rXskckR0W1HmI8ZP2uXjcCuf9XTl+Kt+gRDoVv8AIqrn7XL0UYz/AKuvNW+831qX1/3TR7KHYXMz0f8A4Wvek4GiW3t/pkv/AMbqC4+JQvPJ+1+GrCYQv5kXnXDPsb1XdF+dedjqKf2FHsYdhczO8m+INrcuskvhbTpJEkllVmuH3q8pUuwPlZy2Bn6D0qWH4lCCa4uIvDVhFNcf66VLhw8nO7kiLPXmvPV6inP2o9lDsLnZ6R/wta9wSNEtjj0vJf8A43QPivekHOiWw+t3L/8AG684i+9+Bol/h+tL2MOw+ZnoifFG+Rp2XRLZxNL5pxdy/Kdipj/V+1Sf8LWuxgNotsD3/wBLlP8A7TrzeLofrSS/fP0H8qfsodg52ejv8U71w8Z0C2dHBUg3UpDKwwQR5dQR/EiGCOGCLw3p6RwzfaIkSdgqT8jzB+6+9yea4Zfup/u1VP3j9f60vZQXQOZnpY+K1+TzoVuB3P2uXA/8h0v/AAta8wSNFtmPoLuX+sdedH/VvUcP3x9DS9lDsHMz0WT4o3s0RVtFtkAkhfJu5cExusmP9X7U9vitertxolq2eTtu5cfT/V153cfdj/GmRdP+BU/ZQ2sPmZ3938SVvo0ivvDljNGHEipPcSOAw4DYMf5U1PiSsVy11D4YsBctGIjOk7iUoAFALCLPQAfgPSvP5vvtT4en4Gl7KO1h8zO/PxMUsTJ4csQx+0bv9IcnNxjzefL/AIsDdTJfiQLkW0cvhbT5UtSDbh52ZYQoAGwGLAHA/L2rztup+tWB/qm/Cj2UewczPRv+Fs3Rz/xJbYt2H2uTk/Xy6xvEXju78R6Y+nS6XFax+fBOZkuHkIMZJC7WQDn61xK/eX61PL/q1/GhU4rVId2MGwKdpLN3GMACjc39wf8AfNNj+8fpXQw/6qH/AK5p/wCgiqlLlFY//9k=” alt=”” class=”wp-image-136″ >

Measuring and Verifying Finished Hole Size

Accurate measurement and verification of the finished hole size are essential for ensuring that the machined holes meet the required specifications. Various measuring tools and techniques can be used depending on the hole size, tolerance, and accessibility.

Micrometers

Micrometers are precision measuring instruments that can accurately measure hole diameters. They consist of a spindle and anvil that contact the hole’s surface at opposite points, providing a direct reading of the diameter. Micrometers are available in various sizes and resolutions to accommodate different hole sizes and tolerance requirements.

Bore Gauges

Bore gauges are specialized measuring tools designed for measuring the internal diameters of holes. They consist of a gauge head with expandable contact points that are inserted into the hole and then adjusted to fit snugly against the hole’s surface. Bore gauges are particularly useful for measuring deep holes or holes with limited accessibility.

Coordinate Measuring Machines (CMMs)

Coordinate Measuring Machines (CMMs) are advanced measuring systems that use a probe to collect data points along the surface of a hole. CMMs can provide highly accurate measurements of hole size, position, and geometry. They are particularly useful for measuring complex hole features or for automating the measurement process in high-volume production environments.

Go/No-Go Gauges

Go/No-Go gauges are simple, quick, and cost-effective tools for verifying hole sizes within specific tolerance ranges. These gauges consist of two parts: the “go” end, which should fit into the hole if it is within the acceptable size range, and the “no-go” end, which should not enter the hole if it is within the acceptable size range. Go/No-Go gauges are commonly used for quick inspections or in situations where high precision measurements are not necessary.

PCB-Assembly.com/wp-content/uploads/2024/02/rayming-pcb-manufacturing-and-asssembly-1024×535.jpg” alt=”” class=”wp-image-136″ srcset=”” sizes=”(max-width: 1024px) 100vw, 1024px”>

Best Practices for Achieving and Maintaining Finished Hole Size

To consistently achieve and maintain the desired finished hole size, consider the following best practices:

  1. Select the appropriate cutting tool: Choose the cutting tool with the correct diameter, geometry, and coating for the specific material and hole size requirements.

  2. Use proper cutting parameters: Determine the optimal spindle speed, feed rate, and depth of cut based on the material, cutting tool, and machine tool capabilities.

  3. Perform regular machine maintenance: Ensure that the machine tool is properly maintained, with regular checks for spindle runout, bearing wear, and overall accuracy.

  4. Monitor tool wear: Regularly inspect the cutting tool for wear and replace or resharpen it as necessary to maintain hole size consistency.

  5. Use adequate coolant and lubrication: Ensure that the cutting zone is adequately cooled and lubricated to reduce tool wear, improve chip evacuation, and maintain hole size accuracy.

  6. Verify hole sizes regularly: Implement a regular inspection and measurement process to verify finished hole sizes and identify any deviations or trends that may require corrective action.

  7. Document and analyze results: Keep detailed records of finished hole size measurements, cutting parameters, and tool life to identify opportunities for process improvement and optimization.

Finished Hole Size Tolerance Table

The following table provides a general guide to common finished hole size tolerances achievable with different machining methods:

Machining Method Typical Tolerance Range
Drilling +/- 0.005″ to +/- 0.010″
Reaming +/- 0.001″ to +/- 0.003″
Boring +/- 0.0005″ to +/- 0.001″
Honing +/- 0.0002″ to +/- 0.0005″

Note: Actual tolerances may vary based on specific material, tool, and machine tool factors.

FAQ

  1. Q: What is the difference between finished hole size and nominal hole size?
    A: Nominal hole size refers to the theoretical or designed size of the hole, while finished hole size is the actual measured size of the hole after completing all machining operations.

  2. Q: How do I determine the appropriate finished hole size for my application?
    A: The appropriate finished hole size depends on factors such as the mating component’s size, the required fit (e.g., clearance, interference, or transition), and the specific functional requirements of the assembly. Consult engineering drawings, standards, or specifications to determine the appropriate finished hole size and tolerance.

  3. Q: Can I achieve precise finished hole sizes with drilling alone?
    A: While drilling can produce holes with relatively close tolerances, it may not always achieve the exact finished hole size required, especially in cases where high precision is necessary. Secondary operations like reaming or boring may be needed to improve hole size accuracy.

  4. Q: How often should I replace or resharpen my cutting tools to maintain consistent finished hole sizes?
    A: The frequency of cutting tool replacement or resharpening depends on factors such as the material being machined, cutting parameters, and tool wear rate. Monitor tool wear regularly and establish a tool life management system based on your specific application and quality requirements.

  5. Q: What should I do if my finished hole sizes are consistently out of tolerance?
    A: If finished hole sizes are consistently out of tolerance, investigate potential causes such as tool wear, machine tool accuracy, cutting parameters, or material variations. Adjust the process parameters, perform machine maintenance, or replace cutting tools as necessary to bring the finished hole sizes back within the desired tolerance range.

By understanding the factors influencing finished hole size, employing appropriate methods for achieving precise hole sizes, and implementing best practices for measurement and process control, manufacturers can consistently produce holes that meet the required specifications and ensure the quality and performance of their products.

CATEGORIES:

Uncategorized

Tags:

No responses yet

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Comments

No comments to show.