What is the Board Thickness?

Defining Board Thickness

Board thickness refers to the measurement of a board’s depth or the distance between its two faces. It is typically expressed in inches or millimeters, depending on the industry and region. The thickness of a board can vary greatly, from thin sheets of paper to thick slabs of lumber, and each thickness serves a specific purpose.

Common Board Thickness Measurements

Thickness (inches) Thickness (mm) Common Applications
1/8 3.175 Thin plywood, hardboard, and MDF
1/4 6.35 Plywood, MDF, and hardboard
3/8 9.525 Plywood and MDF
1/2 12.7 Plywood, MDF, and drywall
3/4 19.05 Plywood, MDF, and lumber
1 25.4 Lumber and butcher block
1-1/2 38.1 Lumber and beams
2 50.8 Lumber and beams
Request PCB Manufacturing & Assembly Quote Now

Factors Affecting Board Thickness Choice

When selecting the appropriate board thickness for your project, consider the following factors:

  1. Application: The intended use of the board will largely dictate the required thickness. For example, a tabletop may require a thicker board than a cabinet back panel.

  2. Strength and Durability: Thicker boards generally offer greater strength and durability, making them suitable for load-bearing applications or high-wear surfaces.

  3. Weight: Thicker boards are heavier, which can be a consideration for projects where weight is a concern, such as in furniture or transportation.

  4. Cost: Thicker boards typically cost more than thinner ones due to the increased material usage.

  5. Aesthetics: The thickness of a board can impact its visual appearance, particularly when used as a design element or in exposed applications.

BGASecZF2R+a25CCE55APNcr4luo9RGnmxf7nmM7NhV2suO+etRGN2bVpxpwbi9S9putX99apO9zp8bMx+WRtrAD1FQw6nrt5LfWv2rTFEOdzjJXYTwVP86xrSz0jyUW8W4EpyH+zsgjI7Yz+tPbTpIZLhbRVa2aEovmXUSuQ+OHC5yPUVfJqzkjXm4p/qU7meOBjHHHDkXCB5EJcFt6ZKMfXNMsdUj095AkMbMHuI3eZR5Sv9owQTGAenPJqO5065ghGQrMZQf3TiQggqegPtWWZZXl1L7M8v2d5WllikwArtjhu3WuyME1Y5VUs+ZHRyLpAvftZuYJmlgmgnS3DFFWSNgGVewBx3qmkwbTooWOJQxj3gsg8vHCyPjBrBjUvIqLuilJwo6KTyatiTUFtn3b5LdJXWQLuwrR8bjjitI00ialVy1sNtCrahaIIlMYlljbdJsjYAYOWwQB07fzrT1gi3Mn2VLdRLbv5ghlWTAUg7jkcVkWrf6QxwQHeZcHGf3kKyD89tS3DFEKqqkvujOeAPkJ5x9K05byuT7XlXJbcX7TNMVhMscSLHKiMkcKlgpVgrs5HY5ogttVmEQjuI2E8c6qGmUsyQZJVhnt2FVRA8rRRboxxE29zgYO2HJP5E1qw6fcWjmWF4meEsolSeMAFlyQoJHUUSsjRXfS4RJqSKWk8mZLi1Mx3y4LCNgpG3P3x6UoMOWKgDzNrfeJ6DjrUlmLyWYLC7gRFpC6ugC7zhiu44ye9WEs9keonc4QLlgvlszYPBbBI79jUcyREouSvZpFWH7ODeRsSs7RSXFtMhctxtDW7gcbT1FaS6jADYu/nNAbRYpo0aRvIYAAggEdfr3qjPqBWMr9miKSGKBwGdCUJC8upzjpTo76W4aZo4hDK8ERMgldm+RguCM4zwPzpOLe5pGaitGXvtFmzWwtnJhSVJZYPmXBU9eTnNTXb2c7F4Y3V2Zi+85z3B69axJZXF8J3PDmN2OP4T+4ccemVP4Vo5VXKZPHUkDrj0FTy2JdRu6IZ1KPbSj+F/LJ/wBl+Qfz/nVbW1Jls5+0kOwn/aQ//XrQkjEsTJyC6nBb16r+tV50N5pUjAfvLbE4B64HyuB/ntXBio6XO/AVOSqr9Sjpdta3cl0k5bKRB49rbec4OTVq502zitppYy29E3Dc4I4PpWL174+nFNwfU9eck15aTve59Pc0NNtYLyWaOZiu2IumGC5IIqzd6daw208qb96AHDMMYzg8VjHIBIyCPTitfWxuj0mZSSJLZQcZAJ2qelFnzWDSxV062gvHmSUsCke5dpA74Oc1PcafbxW88qGTfGMjcwwcHmsg5A4JH0OP5Vq6sC1vpU4PDwKGweCdoPNNJ81hK1itp9vDdvMkhYbY967SBznB61YuNPgit5pEaTcgyNxGDg1kfMBwSD7HH8q1dTPmWulzjOHiCnHAJx/9aqSfMIr2MENy0yyMy7I964IGeQD1qf8Asu1/vyfmKyjkZwSM8cHFTfaj7/nT1TJudrapciG5/tK2F0WwIU020nidT7yHFUJmsrUoLm08QwbvuiS6Cj8CRirMS22qae9vFLYzaupLIbQS2eV3Z+VZMZ4rPh1PU7DzLK9iNxBnbJaXwJIH/TN25H61yte80dG5ahXTb1RHaanqFneFv3cd/OTFJ6BZEwM1JNfX1uRZ+IrH7TD92OfAEwH96OVeDVf7Bpuo5bSpfLm27nsLxgrg/wDTKQ8GkhvtXskaxubZri3yQ1rexO4X/ccDI/M0BYtQ2U0ebjw7qRkjb78BkWKdM9mR8Kak/wCK3wP3lx1z/rLb/Gs3z9Nyx/sI88DF1dDH/jtOE2lcf8SRxx/z+XP8itSFjQz4zBYl7nAHZ7Ygk8DvSZ8YZXLXOByebc9Kz/O0nAP9jyjnj/TZ/wCqU0zaRlv+JVKOAMC+m69/4KVijRDeLTtX/SSxORlYCPr0rY0yPUYPtk95dxylFEKwxouY5GUMdzhRyB6HvXMxnTHeNINKu3nZsRLFfy793UbcJXWzn7PbwW25y0cYDmSQyOZG5bLnGfTOO1bUoc0kefj63s6VurJYbgC3byBLJcEyFkRYBtOCclnUntwKqRPdG808RoCVgfMbsDIpYEvIR2PpmoYJp0dWEAlijzn9+8Kq56sWztBx7U5b2CK5vm84TMQFhfc4dP8AY3RnJUcHJPavfirKx86pqSVyBbaaRWSSWdYbiVxDGfLRJJFIBZ2UHkc9u1VhG9uGuBI3m8sPPkWQL5eVBAJ+uKlEt2zupmRukcblrld5fO7YoAX65qGQB5beFgsPWTIIyFiwFC5OKtENpK5ZhuL2WFQkcESjgh4gy5wMkY9+1KzXjZJNqWbhx5ICkDPUk5qCd7gmMQ3EUZBYOZMM7YHDDH68U23N1l2nmhkUjCGJCMHPPOelFjB1JdxxbUzyRYg8L9w5C+gyPxpYjc5bzxbKdoA8qNSzkN1OewHFSlhz6Hg+4qN3QE5IGMBSe+ewOaRDqSKX2l7m5+yL5ezzQpkVVjYbW3EDnPGOcY7067hsUZ5GtudiqGZHlTzScLuZXABPbn8KhVFW7vWVmY7EkZsHcrysQFGOOg9Kat5BbXM5dpJQEdFjZlKLIybQxVsg7c+lOxspe7dk8K3siTQzbIz5gMsupCaMMFXPljJA/P8ArVyztVcTXn9sWQdYZYI4yJCI48FSqLkMB1x9aypdRR7a1t/mZoWmkLzMr73c9QGHXt3/AAp721vJK8M80hjhs/PmQqR++KggbQANvI6ip5RqS6aljTrmxt7pbma5iUICojsog+0gYGQcr9TkmptT1Gy1O5QRi4lACxQtNHGmGZuSApBx9QazmjEUl0gsLdAlqrhftDbEBA/eK2cE+2fw4qGGSJWt54xuCtvKA9SOMKx/Oly3dyHOUYuKOnuIoks0umuBMkjLHLBszsQE4Xd2qGWBRZXNyUMBS7tEt4ZN4k8supY54znOFz6VDb38MyW9qUYKxMriSTYzKN3QY9eBz+NMkuZo1tWgg8ueV2lBmmJNuI9xCzIMjccALyfqM8LlZrGa3Em061uL6CDT5ZUMaFpLfWd/lMT91kbuQDwM1JKr2ZmtJGjluFWN7u4RvM85nOVRyRxtxkDHvVC9u9Su7i1lu8P5KjUCUDCRzGMLbKjYXfz/AHse9OtDEras0wBE0kdxESr7gzwj5GGcZXGDyef1fK+oqktHYczk/wB3aeCNq1Hpd3JZagLue3lfy1mhCwJGq7JXARsjknjmlJjMfmfPtwcMFOzkDHzVoaPp9peXjfasCKGFmZSzLvcuu0kgjpzQ9jno8/OktyPULz+0btrlrZoo1tvsyLMVLM4kLFsCqfyBQoAAUYA6BfpitPWrGxsriFbTIjkR3ceYWXdzyMknk1kAORGHGQY3EmT1zwO9EEraE4iUnN8zJontlcSSFXiQkybSDgD1xTdSu4RPp8FhaDzbl5E2yPtBOF24PNUfsFqokEW9FQqqpHjpjcQSMsfbJp5sYFljKvOSu9ldtjFSMYwSuM/jV8qvcUZpKxbNh4kIwunQ/wDAbhc8c1Qt3aJGuXS3QCWaG4RoxKpZB/EvAP50+WK4MCq11cBMqWQAcEuMtwM5qqy+VAbeMuVMplyeWLNkbRjtVwT6k1JQVnAqtgT3oxgK1vMgK7SobcTtHbpV6zHmWOuwkk7ZEkOGHAeNDnaWGeh7GqEoKz3O7AMlmrgA5AKsy+p9algecyX0SNKYpIY2eKF2jaTO9NzMoJwMcitrXLT0uypahY5rQu8Z/eabvUElkODAyuCByQfWr+qReVK7LHti8yF1ACgbdwB4UkDr61SjihhIKLlhzvfru9QOgrS1cs8UTFZB5tmQu7dglRkEbmP9KvqQ5KWqKumTiCe1DJCyyI8DGaMSFCg6rkj+6c1pXU3kzXaw+RLDNFE8nlKkSI0fzAg/d3ckY3ZPpxWHFIoeJ2UsiXaOV3FfllIP3l5/5afpW3I9ultHbvESkjzSqI73dsLDZ8/y59OtZyjrdI6IzsrN6CRT31kkVvPGzQITau6GN/8AWtuXIQFsDOAcHNOvryby2H75FaVLdwYyiiDPVjLHjPvmmLemRLmK7Ek9vPEkRXcEZQhB4YDrwKpXs7h5pIWmH2yGWCbzXEruY181MsQPQj8aSi76le2i1oyzHFYrbsDbQymFo4zJJMzFwdo3sqkZI6scDpVsW0AlMK6fGCU82FjKVWTDYxxJgk+x7n1qNYUKwzSuqRzRrJEUCyE7lD4KqcioptXijXZEjKSgRoy/msH9Qzj5fzoafQzjU7obcQNEkCyKVZHaGQMCCEnBQD5ueMj8quxMJIbeXI3PGN4wflkX5CD68isw/wBoXgL3D+XD8pIbJZsYPO75j+OPpWlCiRxiNSSQxky55JY5JI46mk9iCyMEJzycKD2yP4ahttsV3NC3McvzAHjKydRj65qcdW2kY4ZD2J/P6VDcrh7adRwriJjkcB+RkjjrXPVjzJo3h7uqOfuYTbzzwH/llKyD/dzwfyxUPrWvrkQEttcr92ePa2P+ekfH6jFZNeK1Z2PraU/aQUhprVu8y6LpUp6xP5efYFk/pWWa04j5ug3S94LncPYZVv6mpfxJmyMg9D6VqzgzaHYyc5glaMn2DMP6isvr+Valp+90XU4+SYpd4HYAhWz+hqtpISMetaTE2h27Z+a3lZD+D/8A16ya1LD97p2qwYztxIPxU9Pypv4kyUZWKgxU47VDxWiJZ1Umkb0a50q6F9DFyxiyl1EfUx/e+hFOi1cyRpbatbi9gUlVkPyXkP8AuvxnHvWfG01vIJIZJYJ0xhk3I4z6g/1rTOoWF+Qurw+XMEwt9Zrhyf8AptEODXHuu6Oojk0uGZRcaXeR3EQYfu5ZEguoT1G4OR+dWFj8UqFX7XdBQPlAv4TwP+2lUPsulnH/ABNbU8k/Pa3ece42H+dILTS8t/xM7P0BNvd8/wDkOiw7GksXi44xc3mCf+fyA/l89SeX4wyxE96ccDFzAf8A2as0WWlEj/ia2HA7wXQ/9p0fYtNP/MV07k/887of+06QGkE8Y/Lma/8AX/XQH+tLt8aDkSX3Uc74D+mazvsOmktjVdMHHUrdD/2nR9g0/wD6C+levJuR/wC06QWOk0aPxP8AbWlvpLryIoX+SURMJZGG1VXZzx1/D3q3cWeoysxEDnuemfyzmnaVBb6TpPklizXoNw1zaNjIdcKUL4PAxjiq63mnWUvnWyzSXCRlGaWVVVgwwTJ8xzXpYdU0r31PCxkfayd9kUkif7Q3mRE+QMlSBkyMdqghuOOvNWCDbwibM4eSdbaGMTgeYx5Y7osDA4HSqM93el553miJmbewGzOQAAMsegp39q2vnWjMd0dnbSeUC8as1y4yXOGwBXepwtozyIU5RvoOubtIJ3h3sVjLENmUkvtwQcyEE+nH/wBaq8GoXvlSxwjyPuq0kkY5B2kspJ6c1Hc3elmKHyXZrxyGuZnePZuIyQqnPenwatYJBK9xKz30yiAGPyVhihDKcKpG3J78VXOjT2cm7Mi/si+Ab5I2DE9DDkFehy1Ph0+/tJAUUSptcuiyomWxgEgnb+lQjWLE3Eck9slwse7ajTBDISAu6Ur8vGOgWprjW7aWYTJbQWu2J0U2kqb2LEf63K4I7dKHNdyPZJrYklGsEAxWsajDbjJLG3I5wArUpXUG27rUfKM5M0RG/HHQ/l/nFE61Zrt2m5AWIxoPPhOM43ZwmcHj/Gq39r2aC8UBlM8IhjKSZWNSdz53Ek5+opqSIdBdmXYpZLdC0wZJLgrISVATCKEXaR/CPX/HFO2L9j2rMrm9v0jZo9pjKrg9GGeprMm1axkNgUDg2kCwoJDG68Z52kVCdUjJhP2iceS5lh2sqrG5O4sqgYzVadw5JLozW1CcG4nj8uOQRS+UhcIXIUBRGXU7ceg4/wAKMmozPNcS7JI3lysgildcgcbSCScD0pg1jTwwLwLKWQLM8rl5JSG8wNuzwc47VU+26cXdwjfO7Ngv0yc4yeaasROnPojaDOsCfadkkOB5UomeZkPAESlDge/FQSxOGDm2nt4cqpeTJZST1PAB+h596zmv7J1iBVE2ZwYlAZif7zMxpTqNsww09w67t22Rty59cM1LQUqc7WSLU0qB9rMZETASbayj8ASWFSx3UigdJU7dBIB7N0P4/nWeb60bOXOOTyF6fnTPtNkMssrrz8wAQhj7rmhNdTP2VR7xOghmS4KrGwMjMq7ZGEbAscZYv0Hqat3kH9niE3FzZs0x2JHBMHk3HgZDADHqa5Nry3bHzjAz1XP9aPt0IHDqBwOF/HPWhpPqXGjZO8dT0CWbxPHZzbrRTbJAQ6r5GfLAxgAP6VmoumnDNqO3cgOPs0pZW64yDjiuVbVZHUq13KyN1VnfaR1wQWxUBubfPWP8hUqK7m0otte636nS3vkKSltcmQMFUTSx+WqMcdmJJx9KsLY2Q2iTWG6EZWFxznrhhmuS+0Q9Q0fHI4A9uKDcREnLRnnJz1NVyruZKk1e8ToJojHJIkVwssWcB3CoZOMFiu2kHnFkLyADgMyFNwQ4ztyuM+lc/wCfB/eTrSebEQPnTjpz+dXZdyPYyvex17jQhndNqZAzj5oAex7rWBezWqPsiMjHsDguRuJ5xWefnzs8vgEnLqPyyahErLuClcE8j1P4VUFGL3KnSlPeNvRFjeS5lkwP3RiALAkgspyx6duMVJASJGeQyJG8CRMQAHba+7IU9uvWqwn24Kwgtx8zOC34cYFDTzKSGiGeCfnB6/Stbx7kSpTtZI1FuFicLaAB/M+S5kwkjKf4WUkpj/CmyRRIr+ZODcb8GNVDoVbnIlQ4/DFZn2mX/nkP++xThcSj/lj6n747U7ruZ+yqdhoB8qVe4iUj13Rh0/8AZVrQJLvldu10Mu5nVVxgNtBPUnsKpxTzwvI0cSb2DbWf5mjySx24IFPmllbaIDIUIyzMiK+45JxgnijmXc0dKTWxYklgiA3S/NgkJtJb8cGqjXMrFThVVSHUMAzEgYySf/rfWo1hmJ4jYZIJdufx7/571bhSFP4XeTqC6kgHsQP/ANdHNHuJUXHoLGt5NFDGv7uFECBzkM6geo5P4Y+tX7W0tI0cs4RshA7L8+ScFlIGAB3/AJ1D5ozna/Ib+Ek1Ik+MkrJtOOqk/hiocl3JUJt7FyaPy42cTxyYHKqSWI5GcH8PzrSt2iaKJc6f6bpBIC3bcxP51jq6lBhJPlznCNgd+alSZAc7XweCfLbjvnpWTa7msYSXQ0w0AMjP9jjIUfMSwO0jhgRVR5YpYriKMmTnarokrJ8pyNuwYqCXbNEU2uCHWRdyPglTuweK2jcRTpDte6tERceSiMiluMHcB0rCpNJHZQo87tLQybuJrjTJVKkSwBbhQRg/L94Y+ma5vNeiSXMEsMMXl+bIAySSBWyykYBOe/rXA3MDW1xPbsMGGVk/DsfyxXlVkua6PcwicIuHYrnjHtXQWv8AZUkMsdocxbQ12k27f0xuk7Y+lYB6VpaHj7XcxHpNauPyYf8A16wltc7kylefYBP/AKExMO0ZPzbd/fYW5xVzRiXTVbf/AJ6W4cD1I3L/AFrKKlC690Zl/IkVs6QlqgeZJ83bo0bREhdq5zwp5PSrnoStzE9vwrT0Vx513CcYnt8fijZ/qabqdpY2wR4JiZXY+ZAzKzL33ccj8ag0x9l9b+j74uP9tCB+uKctroS0ZVK7GdT1Vip/A4qDNXbxdl3dL/00J/76+aqX41r1Ie52r3yXGw3d9oly4yBLcWF1uA9MoB/KmCXTyGzL4b5OBm0vhWaQOTjoKAq/Jke9cOh3GkZNPzw/hrp/z734/rSK9hgfN4c5bJzFf5qhtXDHA54pwUbgMcAUrjNHdp53n/imc4x0vxSr/Z3yf8iyfq9+KzdoAB9TS7FLE46DFAWNP/iWYPy+GTuOP9ffj9Kds00n/VeGDxjm8vR/SsoIuUGPU9KbsX5zjvjpSFY6Fb3EEVusnh/yUyqJ/ad3hV9AWGcVWdbNtzNF4dJOAcavd8gfhWMUXcvAxjsKuabpbalJJGrrFFCokmkK7iAxwAq+pqo+RLilqyy0OntgNb6Ew5z/AMTm57/UUR6dp0xCpYaI7t91E1q43N7KKs3dl4V03YLqC/mL5VWRZZMkcHIhAAqabwzptzHGbIywSlPMRZSXRuMgHcNwpe0kle7sJqHVGbdW/h+0SKObQJkvjnzopbm4S3CgnBilDHdn6Ukej+GdUVBZA2N7j/j1vJnaKU+kcpP+fSlttauY4ntdQiW/sgShSY/vY9vH7uTr/nrUutabZ2K2E1u0nlXsRlWGbBeEABh8341ftJrW+hHs43tbUyrnRIrN3ju7OSJ8/KS8hVh6owODWivh/SG0rSJmgf7Vf6lHAH86X/UmQggLnHQda0dYZo/Dvh2OQs00zeczOSzYClhyee4FaCRAN4Gsz/yzWS6ce6Q7sn8TVqc02m+qIcYOKdu/4XOT1zRNHtNQure0hkSOJYlC+dI/zsm48sSasaz4c0Oym0uGGGRXktPNuS00rbnyBnk8d6dqcqyaxeO5Pli+AcgZwiMFJxW3rdtcahMmp2AS6s1to4swNuddpJOU696j21Rw5rvcPZQTimjkl0XSTtzE/wA3fzZOn507+w9I+b9y/XA/fSf41dVwSB0wMEHqCPXNOBG3k9+tZ+3q/wAzOj2NP+VGedC0cE/upDx/z1k/xpG0TSMDEDd85lk/xrRJGW65x2/xppP3eeuaFXq/zMPY0v5UQ6V4e0W71FIJoGaHy5XZfOlGSoGOVbPU02w0DRLrWBatbMbbzrvKCWUfJHuCjcGz6d62vDv/AB/3cn8Mdq35sw/wqHw0VfV2diARHcuuTySzjgZrRV6l17zMpUoK9oozLbQdFn1xrP7MTbC7uI/L82Ufu4wxA3bs9vWq93pWjWmqXsa2Ky20MzosEk1wnyDHIcNuz6datXa3cF7dM6zwTfaZpImAZWwWJDKwqz/bNxKqpd2lneNGPlknjYSYx3KUe3qb8w/YQ35TPax8HMdw0/VIwxztjuo2VT6AuSalgsvAvzpPaX8ZzkSXErSAf7OIGHH4VbS/gleKOPQ9PeRjtREE2WPsKsyQ3qqzv4ZsWA5IRnZgPdVYmj28/wCb8Q9jDsZl3YeBxBIlnbzy3LLiOQSXCRRnux8xufpisr+yLLYX8mXGfvAy7cfXpW4l/arJE50axARgWCNKGGD2DHGfqK2Rr+lBS2686j935I/754O2j21Xuxexpr7JxY0nTeDskwQT/rWqS20XS5rqxhdJtk08aPtlYEqTyAa0LqZLi6uZ44RDFIdyRDHy9uccZPU0/TedR0v2uAf0Jo9vUX2mP2NP+UoapoWk2l/dW8KziONYioeZmbLICck1Kvh7SW0R7/Fz9oWcoD5x2bd4X7uKu64c6rqH0iBx7IKtrx4XPHJuM/h51P29X+YXsafY5X+yLHB5mH/bT/61aFp4d0ubTNTu3a5E1tnytsuF4Cnlce9Jn5W+orY07jRNcHXO/wD9BWm8RU/mD2NPscqNLtMA7puv98f4Voab4f027i1RpHug1tDvi2SADO1j8w2+1MX7q/Wt3QOYtcHrCPbna1Dr1V9oXsafY5EadbYUlpeR/eH+FaGlaFY3r3iyvcAQxB1KOB82T1ytRqfljra8O5+0aiB/z7c5+tXKvUS+IXsad9jmBYwcfPL/AN9DjH4Vf0rSLO8uTDNJcBBEz/I4ByCB1x71H3x/tMPyNaWh4N+Aehik/TBpzrVEtxKjT7GK9nGkkyeZL8ruoyw7MQM8VZ06wtri8t7eZp9knmA7HAOQpI5xTrkbbu8XpiaX/wBCJqbSyw1KwIP/AC1I9eqkUTrVOV6iVKF9indWccF1dwo8u2GVkTc2TtHTPFLaW0ct3aQyPL5csio21gDg8cHFWtVG3Ub8erhvzUGoLVtl1Zuf4Zoj/wCPCnKtOzaYeyhfYW/t1tbueCOSXYm3bubJwVB5OKhDSA48x8fWtHWwBfuRyGjjYH6ZFZvej2s2txOnFPYlFxcLjEjY9ya09JnuLmS6iklbKQiSLBxyHAOaxj/WtHQzjUCP79vMPywaipOXLe44xjfYF1rVYmIDpwSOUB6HHrVO5uZruaS4mKmSQjcVG0cAKOBTbhSlzcqe00g/XNR+tN7hZIPWrmkPs1G1/wBsSx/99Kap/wBaks38u8sm/uzx/qcVM9Ysa3G3qeXd3iekzn8zmksjsvrBuOJ0GT/tHbVvWU2ahN23qjfpis4Ha0bf3XVvyOa0lrFi6lnVo/K1C6GMBir9MfeFLpq6eZWN1KY5FKGAsSqZB6kjv6Va8QAG5t5V6SwA9PQ1isOKfxxT8hdTb1CGy8t5ZZNt0OE5O6YA4B2Ht71z+TW7rALwaVcY5aEKx9cqCKwaunrFMmW50fVfqaf3PT5Rim9CopTznjqa4DtHAHCDrk5NOzxIfwpuORz2o/h/3mpAOzyg/wD1UZ++fU4FJnBJ54o7L+NAx3fPotIM7Pc80m4AN37UbZyYwsMrbuFxGxJPtxQMTP3uOgx1qez1C702fzbfayuoWaKT7kqg5AJHII7GrcOi3AiNxqM8Vjbnk+YQZT9Fzik+xeHWyy6pebAvLfY5Cv1yFxTUrMW5cXxPahJN2nzq7cny50K/huGauadq6azczWBgntd9u22eKYM6qODnI4rHi03QLnEVvrRaduUWWLYpPYZOP51oaHZz6ZealLeGJG8gR258xf3pJJO0Hn0ovHW66ESgrabmA8CJcSWyMWUXX2dSRgsA+3Jre8WOGvLK3TpDZqgHoXbAFZVjBO2sWEVxE6M115zq4wSAS+au65NE2ukyNiKKS1R267VXDHihaxivMpr379i34oBL+HrJRytsqAD1YqlTa7fS6bqmlSwBGe1syux+hVyFIz+FRa9aXl5cW+o2RWaBIECNA251KnduAFVY9atrxPs+t2yyfwLcRptkjPTLKOfy/Kjmbvbe9yIx0T6E3kaFrL+Zaymx1B8u9vOcxyOTklSfX2/KqGzWNEnLAyQOX+8vzQSj0PY1NcaG+37Tp063dtjKhSPMX8qZZ67eWw+zXyfarYHa0U4/eqPZm/rU3XTRlWdtNUWn1PRdQBfULOWG6UYM1jjEnuQf65qHd4Y2qN+qDn+6hp0tv4busT2eoLZ5+/BOCdp9ADzUZ07TPl/4nlnz/s//AF6lvXYajZaDifDXP7zVM/7ifnT4rPR70BLK+liuQDtivVVd/wBCP8ajTTbJyVXV7NmY7VAHU/nVW+0y+smBmjLRjpNFlk+pxyKNOpWvcmim1LQJ5jcWm6KYBH7qyg9Y5Bx+dSLpumalmbR7gw3CfP8AZZ2Kup6/I2c/zqC21u7gTyZwt5angpLguB6BjU6abpupb7jSbgwXK/N9mkO0qf8AZI5FV6iEF54sikjtHMzTA7FEkMb5H/XQjH45q4f+EvAYgWuQM4jjgLGoYv8AhM4XjyrSqnBSUxMrgerdavfbddAcpo22THDNMpUH1xSbDXojJj1rWIpVMpicoSskTwpGfQjcoyKtf8JHtDGGx2ynnMku5FP0AzVT+y9aubhnnh8t5maSSSQqEGfQKTUreH7xUd4p4pXGSUwV6ehp3QnbqZrFmeSRyC8jM74GBljk8VGACCff8KV2IZgRgj5SPQjgirVrpl7cKHYLBBnmWb5Rj1ANGwymzLk59K0tJsrprm0vGiKWsLF2kkOwYwRxmlM+iaeWEEf266HHmyf6pT7DpWfdX19fbftEx8sHCxR/LGB9BT1Yth+rTRT6hfyRMHjYqFZeh2qAcVoDH/CMKM/8tcjn/prmsMj72Onatguv/COxr3Ew/H56bWwGOSCjVt6dj+xNY/7af+gisLPytz3rb01l/sjVUzzhzg+hWiQkYQPyj6it/wAPYMesjuY1x/3y1c+v3ffNb3h1sDVQOpjXGenQ05COeHQezEVs+HT/AKZejjBt+/fmsUnlh6SN/Otfw6f9NueP+WB/nTnsJbmRIMSyj+7LIP8Ax41f0Qj+0oc91kH6VRuMi5ugeMTyf+hVZ0htupW59yPzFXP4WStyO/XbqF8P+mzn8+abp7Fb6xYdrhKl1f5dSuvcqfzFVrU4u7Q56Tp/OnL4WLqXNbGNTuT03pG36YrPjOJIG9JEP5MK0/EIxqCns0K1kf3fZh/OnvET3NfXl/0mBs53Q/1zWT6Vsa4AV09/WLB/EA1jDoPrSj8KFLcU9D9at6U5TUbQ5+8WQ/8AAlIqmaktG23dm3pMn86cvhYLcm1Jdl/dD1cN+Yqr3NaGtqVvmP8AejUjHsazu4+lXurie4HtSAlXRuhV1YH0wc0dqa/9KQjX18Dz7SYf8tIBz645rFboa29VxJp+lzDkgBSfqMViHv8ASqg7wQS3NjVv3tjpVwOuwIfxX/61Ynatx/32gxHqYWx9MNWGe/50U/gRMtzYm/faJav1MLhT+BIrn66Kw/f6TfwYGULMPyzXO5rSgrxa7CkdGDyT6ClH8PPU0q294wGIH5PcY/nTmtb5Tk28mFHYZ/lXC7HYJu5Y+lLn7v0zUOSPlIIYnkEEH8jTweT7DFIB+flP1pCevtim54HuaC3y/U0DLen3NtaXKTXURkiKsowMlGP8WK1rbUfD+nyT3MdzdzO68RNvYAk5woPArm2YfIDUsFjfXpxbQMy5wZDxGPqxqmk9w8iVb5ZNThvr1WmgE5kaJyXCIegUHjiuo8+2jxrD6jcCwkAWO3CKIjngLtC7v1rFOmaTpwRtUuxI2M+RBnk+hxzUV1eXespDY2FmUtIWGxVHXHALHoKl2skugyle3MM9+91bRLEnmLJEmB1TByQOOa2f7YsNRMX2jRjcXa42bMPhh3XPSmxaHZ2iiXVrtEUDIiibk+xPX8qbJrUFsjQaTapCnTznHzn3A/xourcq6B5mnGLj+0LfVdT8i0jghMMEG7dJ8397Hesq8s729u7u4/cxieUtFHNJtkZeg+Ws4yXc9wkpeSa4VldAcsdwOeFFdTHE00A1C909PtkKkxrgM5wOMelTJWVx6bmBHLqujzBVLwk/NsPzQyD1x0rQF1o2rbUvYhaXbcLMnCsfr0/Os2+v59Ql3zKI/KBRIwPuDvnPeqx24UGj4l7wdTYTSdbsZXls7iMpn5WEm1XH+0h4q9u8ROyM1rpjMO7EZPvXMhzgrvfHYb2x+WaGaQEYlk6f32/xos3uwudQf+Ei2nNhpR565FQXF1qtoVe70izkt8fvDbqGIH1xXO75iAolmJYgKod+T9M1tae/iG1XaEE0HeGd1L4PZSeaTVgWuwfYtB1YFtPl+zXJyfIcYBP+6f6ULc6/oreVcxfaLTBHzZdcf7L9vxqaSz0nUXxHvsNQX5ih+Rt3rgHB/A0032taQfK1GNbq0Y7VkyCxH1P9aF2X/ABiC20PWFL2Tm1uyNzQtgKT1+70/Ksi7sb+wkJljdcfdmiJ2/8AfS1sPZ6FqgWbTphbXQG7YCVIPXlf8Kntj4ojjaB47W5jB2h5X5x7kCjbyEc2Lu8+T/S7j0/1r/40pu735v8ASrj/AL+t/jXVsuohk3QaWCB0+b/CmO2ppE7rY2EwB5EZIbj0yKOZjsc9BqWpW8qyJcu524KzMXUj6E1cfX9TljaNVhi3Z3PGp3Y9BmrMd/pd+4tdQshbTE7IyBjDHgcgA1m6jYnTpVUSb0lBZCeoHocVSbe4mkVUUtPAuTlpUz36sOtbHiN5DLZQ7z5flZKg4UnjkgVT06ymupVuEZQkEqlg3Vsc8Vo61Zz3AF4jL5cEZDKep+lLS4HPhQCcjoKXAwD71NZ28t7JIkRUFVDEt71aOjX20t5kZ2gsQM020iTLbgvitZwP+Efi4/jB/wDHqykV55fJXG5iRz0yK3TZ3D6WlkNvmg+pxwc0SdmgOcB+9W1ppX+zNR99/wDKsVo5I5nt2x5gYJx0ya6Cxs54bO6t5AvmTAleuORVSaEjnA3FbWhHDX3OAYv6Gsa5gmtJGhmxvHOQeK2tLtriDfI4+SaLC/l3qpbCW5hOfnkHo7/zNaOhuy3zY/ijIP51TvLa4tpHMoAEjsVx6E5q5o8UqzLclf3ZUrx1zTlblJW5RvD/AKZd+8rGn6a4W/tmP97+lO1K2uIppZ3UCOV8qe9M0+GeSeKVB8sbjcaqVuUS3Jtbx/aEhH8Sqf6VQhOJoT/00T+dams287zfaVXMYQBj+tZcEUszgRDJUhvyo05Qe5q+IB++s3ByGi6/kaxSeD9a2dShuZ4rUqpPlL83txisdVeRvLUZY54+lOPwiluberHfY6c/XhRn8MViDpW3PHNPp0MIT97Ht4PtWIQyllYYZTgj3op/DYJAf6UIcSQnuJEP60h7U6KKWZwkS7mBBx+NU9mSamu8yWj/AN6LH8jWTnpW9qdtcXMFoY4yXjUbx6YGKwAHZvLA+fOMd80oNOKBi5600mrP2G/zjyWqtIrxsUdSHHBBqk09hGzIPN0GM94XHvwDWFmt+zimOmXUDoQWBMee+awpI5YSFlUq2M4NKn8NhSNnTtsulajD3XJA+ozWFzW5oqSqt2GQiOWM7T2JrHnhmhdvMQqCzbc9xmnTa1S7g9jU0JxvvYifvxZA+lUPsbf3T+VT6QJlukkCsYyCjMOnNbHkj0/Srpz5JSsHQuTXdvbKhmlVfm4981cim3IHRshzxn0qs8NrMSJEjfbyCcHmpd1tEilnRVHYGuK2mu51XFu7W3u45FKKJY0LrIoxyPWuYDfe9ckH8OK1LzWIyskNpyzjazDn8sVTttNu5QrSYhjPJZ/vflRGPLqwvcg3jI+lWoLC+u9uyMpGesknyr/jVkSaNpzHA+0zDoThgD/Kl363qRCrm2tz9VGPr1p+gyUQaHphDXcn2mdeRGvKj/gP+NL9v1vUgIdPg+zW2cblG0Y/3v8ACmC20TTdzXUn2if+6eef90f1qvPrl3IBHbKLeIDA2gbsfyoUbiuXF0zSLHM2q3XnTHny1JIJ9D/EaSbXn2eTp8CW0XTcAN2PYDisElnJd2LMTyzHJP4mpBgEU+W24cxIWlmkLyu8kjHALEsST2Ga2rfQdqpNqFwkMWNxVSAcehY8VlWCede2cfYzKT9F5rY8SvuubSHdkLGzFe2eBSlpZdxpjn1XS7APFpdujuODM3TPrk8mqcWtauk5mMokB+9EyjZj2xWaAAv408dTj0pJWC9zca40PU0LXINrc9yOM/8AAuhqNbHQPMjAvt/P3S64b24FY4A20wgfNU8q6DudZFZxFirWtqLXHDgjcfwx/WqE1l4fE7qbwpjqquML7dDWMJJQqqJZdvpvbH5ZpMLk0uS2o7m1CvhyxlW4FwZmQEqpIbB9QAKeur6MZmumS4Eo+6Pnxj/dBxWDtHFBUVSSFc2lQa/eSXBZoUt1AiVTtkY9ckjpWncW8uqWzW08ckIgI2uxHzlehFctHLcW7iSCRkbHJHQ/UVNJqurSI0bXBCng7AASPrQ430QrjdNt1bVoYW+YRu4JXjO3PNdJPLdTXclhBKIIURWkZcGQ7ieFJ4HSsPQY92oq2fuRsfxJxSanNOmsZikKkmJCQeCCehpvV2A130Gyl3FZ7gS4JMjys2T77qwYZ73T7toopyds6xsMkowzjoa3dalvIbWE2xcE48xoxkhcc9K5aJ1WWF3JIEqs5PJ4OSaIrsGvU6fVxE1zoz4Adpl3H264qp4i3+bbNtYoEI3AfKCcd6m1mKS6t7We2O4RYfKnnp1FU7PWQVEF+geMjbvxn/voVKV9gItP1T7CkieVvDndwR/WrFzrontZbdbcqZAQSSMfpRc6VbTfvrGVArc7Scr+FVv7IvOPmi/M/wCFVddREOn3v2GSVzHvDoF4x2rQOvpsZFtmBYEZ47/jVM6Vedmi/M1FLp95Cu8oGUdTGc4/Ci8Q1K8UphnE23OCxx9a1V1+Ncf6O3f0/wAaxyQcjv3phA4q7Jk3HvNvuWutvWQPtPtWsdfjymbduAAen+NY2OtMYdKrlTFcmvrkXs7TBSoIAANaEespHHDG0Lfu1AyPbj1rKUdaawyRTsnuK5Z1G+F8YyqFdnrTrTUltYhE0ZbHORVPHWmkc07Jqwrly/1NbyFYgjAhgcmo7K/FmrqULbjniqmOtDDpVWVrCuaNxq6z28kPlkbhiqVlci1lLlcgrjioMcU7FPlWwrs1G1mJldfLYZGKy4ZfKnWXHAJOPrTMdaMUcqWgm2aw1iMNny2wazJZBJLLIowGOcVFjrS01FLYLsDViyuRa3CzMCVAIIFV6KGr6MRvjXbUF/lf5gR0PesMTKLkzgfL5pfHfBqLFGKFFJWQXZvf23a5U7X4Azwax72dLi4eWMEA469eKgIox1pqCWwmzcTWrZY4VZW3KoBx7Vm6neRXkiPGCNqkHNUyKMU4wUdiXJmzZavbW9ukUobcvHHpVbU7+3vEjEYYMrZ5FZpFGKIwUXdBzO1jS03UYbSKSOUE5bIxzVn+3rH+635Vh4qvtpqnHqLmZqia5x/rpPzqWGG5upEQGR1LAMxJKqO554rQjs7GHDTM0jDnBGF/KlmvJR8trGiL0BOAfwUVPLN7I2U49WSzPY6WBFFEHmIyW6/mTUUS6lqe5mkMcC9duQPwp8dvbIq3F2zSytgkN938qLi+meNobZFjjIwTnB/ACsvZT7ale1h3HhtJ08HA86fPfDHP8qiF/fahPHbo/kRtn7n3sD3qklncuAVCkepNKLW8jcMrKrg/Kd3SqVF9Re1j3NQaTbCdIHWRmc/NIzMfzI4qhf2i2d2LdH3B8YyehJx1FbE9zOLGJIjm5CjcxAAz3NYTW1/NI0kp+fOSzE8fSpjSnzajdWPc1RpMSGBZA7mTGSpOBn6VHqemfYQskW9o2HI+9tz70+K41VIwEkjkZRgb1Yfrmr9hfNLb3C367nyyrsGRjHcGpdKpuuhXtYdWR6dZDyrO6tHUz8Fs89eo9quavDavayXE5UXKrgEdc/3aoaLLHaz37tu8tmIjVeQBz2rOv5J7m6uH3kx7/wB2rHgAe1EqMpNJIXtY9yvuwBmnqw59a1raHTvsqcN5+AWbaDz9TU7JpT24SYP5gH3gFBz7MKUqdRO3KP2kO5h78AVoaZp32/zZHZljQ7cLwWPU8mpY4NDRwz+c4HRWII/ECrMmswQR+VZQ+wyAiD8BS9lN9A9rDuL/AGRaS744xJGyfxFiRz7EYqEaFMTtFwCSTxsNQSaxqEikKscZIwWXJI+maXSLiSK5kknklcbem4tyT6Gl9XmP20e5TuraSzmMMhBIAYEcZH0qLP8AOrWqS/aL15Fzt2KBu4NVQD7U40p21QnUj3FPJ/CmEU/BpMfzqlSn2F7SHctaVdxWV1ulHyOoUt/d571o6npaXYa9tZcuQGxnKkDpg+tYbJn0rb0m4jt7ORJC5JZyMDIH50pUZ2vYPax7lWz1y5t8w3aeYi/KWH31xxyKs32n2U9qb2ABCVL/AC8A8Z5BrISBbm6nLsVjLs3yjLHJ6V0BktTaC1/ehdmzgDPTHrSlSm9bah7WHcxtN1R7MGKUF4G/Er9Kvy6fp9+hmtJFR25O3oT6FaxZ7cQyFEbcnVS3B/EUyM3MDb4X2N7Hg/UVfsZS1sL2sV1JpLfUbJiv7wA9DESVP5VG09+oG6WcD1YsBXQWt/A8K/aATJgbio4Jpl3cabJEVKE/VeP0NL2dXqg9rDuYH2m9bO2aY+uGJq1balfQsqyh5I2IB3g5GeOtW7V9Pj3YTH0B/rVmWewaMgKd2RjgUOnU/lH7SHcravbwCFLiNMO2Og5OfpWIBJx8rfka6FriF1iVwxUY7e9WPNsME7Gxj+6KSp1FsifaQ7nMZ6g9aawbj5W/I1bkCm9DgDytwJHfA9q3Vl08qnyNwBngVbhUWyD2kO5y68ZyD+PFNOeOD+RrS1LypJVMAwOc54q/A1j5KKVJYYzwKHCougueHc50+4I+opp9s/lW1qYtpIsQrh+OuBTNP+zpFiZcvz0570+Sdr2Fzw7mL+B/KgngV0V0tk0DhUIcg4yB1xWZp8SKzecAeeMc1SjO17Cco9zN59DQTXRlLPa+UPI44FZEUGLk7seXuOMHkU1GbWqFzR7lEnrS56V0PlWW7O04xzwKyLu3zMTFt2HHU45pxjN9A549ynxzRmteO1szGN33u/GahksYGJ2MR/n0pqMuwuaPczs0Zqw9lcLnBUj1zTFtpdy524yMjNVyS7C549yEkUmRXQrBYeWmV+bHPAqldWluSDGcevIH6VCjN9A549zLyKARWzBa2uzDDJGPQ028tbbyv3IAcdM4H8qajNu1hc0e5jnHNJWrYW0J3faAD1xjmrE9paeWwRcNzjIAotO9rBzR7mEaacVoWdsPNPn7Snsc1pNZWBViE9ccCm+ZO1hc0e5zvFQZFaRtHE5Hy+Xu4BParf2GD0X8hVuMl0J549y4INzDLE/WpWtY1Gfx61DHBKWyG6ehzUskc6jJYn8K6mzAk2JOoB4C+9V7iFIgNp5PvUscU5GQ2M9sVBNvEihznBoW4E8E4SNV2HgehNDSKzBtrf8AfJqUSQBOgzimRyR7jkcdsmh6sBTdKATtP4g1XS7IY7lGD6datSSW4U9P51W8y29B/wB80L0Ak+2RKG2g5NTREi3Zz1bLGq2+1J/h/wC+asSYNuQnTbxih7CC0+WFm7sSaok5Zj6k1fX5LYf7v9KzxR1GPVnX7rEfQ0Mzt95iaSlCs33RTASineXIemD9DSBJP7jflSugCnxytE24DPYim7X/ALrflSEP/dP5UAXj5U6BtozjPP8AjTTbxlCQMH2ptrlQwb14FNmknBKqPlPcVNgK/cj04oow390/kaUJIxwFP8qYCVeg4gz7ZqFLYDlzn2HSphLCP3eR9O1G4FAOyOzKecmrAvZBjKjHfBpZLYEkxnr2PIqFreUDsfpTT7iLJMFyM98fQiq8lvInI+Zf1qEZU8ZBFWEuiMLJyOmR1otbYLlbLDIBI9qMk9STV94ElG4dfUVVkgeMZ6incCHJ7E0KTuUZPUU9ImfpUq25X5j2p3QD7jiNcdsU52byOD2qGV/M+RecEZ9qmZWMWPapAo5PWr1uSYjknvVEgg7T1q9bg+WRkfhTkIpuSWbJ7mp7UncRk1DKjIxyOCTU1srKSTgZp9BkdwT5hBNNgJ8xRmn3CNu3Y4pkCsXVu1HQRLdkjaAeKrAkFcHuKtXSkhT6VUQFiMc801sBdnyIQQecVRyc1oSKWiwOuKzyrA7SOaUQZeiy0XXnHWqxiJJ+Y1PEGEeD6VUfzFY5J68c0IGSeUR/EaTyz2Y00JM3c/nSMsq9SaoRMPMXr8w/I0hWN+nB/X8qbDI24KeQfWnXC7SrLwaXWwDHEyD7xK+1REsepzVz78PviqvltTTEPhkCHBPFPkUvkq3B7VEImP8A9anhJExg8enagdiMb42HUc1ZnJ8tSD6ZpJlDIuOtKys0ePalfUCpkg5B5q6rFoCc84qkVKnB61chUiMj1oluhFLJznvRvf1p0iFGOenao6sReSeRCe9ON0zDBX9ar0VDRoWRdMowFP50xD5swLdKbFGZDjoB1qf91D6A/rS0AmliQJkYH4U2FIiPm6+4qu9y7cL09T1qLzJB/EaSQFm6WNV+XrxVKpBukZVYnFWVtuQc8fSmvdDcpitJvlgUeyg1WuI0TBXrUkU6soR+Og9jSfvLQD0SXQvC8NsJLmERwhU3O88yqN2AMndWVqvhTSzYy3ukuytHE06p5hlimjUbjtLZIOOnNdNe2SajYG0aRo1kEJLoASNhDdG47VQ1C603Q9Ka0Eq7xbvb20bMDI7MCNzAducmupxS6HKm+hx3h7QW1h5JZXaOyhYK7J9+VyN2xCenHU47/l1BsPAtrIbJzarOuFZZLiTzAT/ebdwaseFUjTRLXygOXuWbHd/MI/oK4F8SPM7kl3lkaQ9SXLEnOaybUIrTc11m3qb8Vho7eIVsIVMln8wbdITlxEXIV1wcDjvW3c6V4QtHijuVWJps+WHnnG7BA67sVzfhtYxq9hjOf33X/rk1dfqq+Hmnsv7UeMSgObZZGkVSAy5zt46461UEnG9iZtp2Of8AEOg2mn2jX1o0gSN0WWJ23DDnaGRjzwetcl9oXj5WruvGS6i2mqYPL+wo8b3O3PmdcIfTbnFee9qzqRSeiNKbdtTsdA0GPUolvboutsWYQoh2tLtOCxb07f551Da+BJZGtRJZiYEodty6vuHGAxbGatITB4WVrbhk0bdGV6hjDkkfrXmAxgDtiraUEtCFeTepoXUtqt3cx2vmtAszxwFvmd1DbQeB37VaGna2E80aXfbMbs+Uc4652/e/StPwTZwTXV7dyKGa0SJINwzteXdlx74GB9a2D4huh4kGkiOP7J5gtySG83zDF5m/dnGO2MUlTTV2U5tOyOBeSeRvLAIYsECAENuJxtx61JLpmqwvCktjdJJOxSFWibdIwGSFFdV4ssoIdS0W9jUK91cJHMFGN7xuhDn3wcH6Vv8AiHUZNKsReRRRSTieOGLzQSqGQHLcYPQHvTVO179BOe1jz17bUtPCC9tZ4Fc4jMyYVj6BhxmrMNte3MDzw2s0kA3BpI0JUbPvcj0rtLhk1rw3JNNGqmewe42jkRzRqWBUnngiq/gznQ0yOGurnI68Eij2avYPaO1zhzperSo11FY3T22CwlWMlSo7juR+FZ59fSvStC12bU7zU7R4Io47VQ1v5WQfLDmPawPHp0xWfb6VZnxhfKY1MMEC6gsZA2CWQKBx7Ek0cisrBz9zBtNN1qWISLp13sIypMZG4eoDYP6VRu/PQtE0bhwdrKykMp9CDzXpl4niJru2axksVsk2/aEnEhlly3zBWUYGB096w/GMMCf2Xd7QJXn+zs2OWXG8bvpg4+tEqdldBGpd6nHm11OzMCXNldRNO2yAPEwMrf3UHc1JdJd2bRx3lvLA8il0WZcFlBwSADXpWrXdtp9qL+aATPbsogHAYSS/u+GPTgnNeb6/qk2sXNvcNbiEQweSFVzID8xbdnA9aUoRQ4ybL+gW/h6WS9bVGiVQsRgMkrRgsS27G0j2rrV0Pwu0H2lYVNuYzL5onlKeWBktnd0ry1DKD8uf6V6jZZ/4RSPPX+yJc/8AfpqqFnpYmpdapmBe2nhkaj4dOlNBIXv0W6CStMDHlcBg5Ix1rS8U2yLFpkVnaKZpbl1CW0I3sBGT0QdK5DSMf2npGP8An8tv/QxXoHiHVZdJtYZ4Yo5J5ZvKj80Eqg2lmJ289vWiNmm2KV01Y4C+sL6AIbq0ngDn5GkTAJHOARx+tdD4au0trG4RtJvLomZ/31tbrKr/ACgeWxJGMf1revHTUfDk9xLGoM2nfadvUJIE8wbSfQ9Kq+DDnSZT/wBPs3/oKUKHLLQHK8dThJpEnlnVYthaaQCID5kyxwmPbpVmPRtdRA66bdsmMg+Xg4/3Tz+ldD4WsYJdS1q8kRWe2uHjhyM7Gkkclx74GB9afq3iy+sdSuLWC1gkgtmVH80uJHbaGJBBwOvHBqeRWuyuZ3siDwjFHNdapFc26looYcpPGCUbew+644rK8Q22Nfu4rWEZf7MscMKAZYxLwqqO9bHg+5lu9R165l/1k6RSv7FpHOB9OldBBpMa6tqGrTYaaUxx2q9RFGsaozf7x5/D61ahzRSRDlaV2eeT2upWiK93ZXEMbMIw0sZVSzdFBPeorjTNSikg8yyuo3mYpCrRNmRuuEA6mruu6nc6nfsJUeOG1mMUMD8GPa21mcf3j3/znvtZvv7N06W9WNJJYvLSESDgPIQmcjn1zURhF3sW5tWPOZ9P1aziElzZTxR8De6HaCemSOlZkvmSyJHHG7yMQFWNSzMfRQOa9V0y6Os6OJbqJAZ47iGdFB2HaWQ7Q2TWD4HtYWjv75kHnLKLWMtyUUKGYj65GfpT9mrqwvaO2pziaTrkcReXTLxUAySYiSAO5Ayf0rPnORgDPbjr6V6rCniEahM88lidMbeIooxJ9oT+6xYjBJ7/AP1q5jUE0/T/ABhYSTIiW06JcuSAI0nYSRhz26gE+/NDppahGbZy8OieIGCSrpd6YyMhvKIyD3APP6VFeRSx/u5I5EkBAKOjK4J7bTzXqmoprr+TLpN1artXLw3UW9J88giVTkflXHw3Uo8UQ3GtxpBIrlGV+YoX8vbEQx4256H3pygk0EZtmTDo2vGAONNvNpXIzEQSPXafm/SsmTz4pHjljaN1OGSRCrD6hua9d1BNcJjm0y4tcKnzQXMZKynqCsqnI/KvMNZN/PqV9NfIY7tpAJYjyIwqgKqn0xjFKUVEIycjPErA/wCFKZieKjKkHBBo2P6Gp0LLXPl5HpmnJISmfamof3WD6U2LO0ioArsxZie+aswSk8HtVVgQx471JBnJqpCCdizEdhUPPrU0y/NkdKhq0JlllZeopK0XRWDcdBWc4wxFZJ3NS1bDCMfWoJDudj71ZQbYh9M1U6k/WjqAlFLRVAJ05HWtBGYRAnrjNUAMkD1NXpDtiP8Au4qZAU2ZnOSe9Jjp9aQU6gD0fxDqFi2h3CwXdu8uLbCRToXOHXPCnNcGHjlBJ5J67uv5mqeB2Az7CjkdOKqT5iYx5TsvDGs2unrJYXb+XA8hlglPKxu33lbHY9RWvNovhKeWS7NxGglYyOIbtFiZm5JxnjPsRXnG9/7xp6zEfeUH3qlKysyXC7ujrbT+zIPEsT20kKWMZYRuH/dj9xg5dz6+9b9/b+G9Ult5bm+hZrdXVViu4lUq5BIYA57eteaNO5UgcCpLRVw5wOvpSU7K1gcL63Oz8T65p39ny6bZyJNJOEjYxcxxRowb73TPGBXB4qe5Pzj6VDmpcnLVlRjyqx3HhrxBYCzj0zUJEiaJTFC83EUsR6IzHgEdOe1WG0DwTE5uHuYxFnf5ZvV8kDrgAHdj8a8/pML2A/IVftNNUTya6M6XQtXstK1bUVJA066ldEdASsapIxjfHXbg4rpvsfhptSGu/b4fMCh8faIfJLhNm/HXOPevNgrN0FBjK8lR9cCkqltBuF9Tpdf1i31TVNLjtSWtrSeILJggSyPKm5lB7DAArsdah0m4tUttTlMUE88axyBtmyYAsvzkEDv1ryy3dUuLV2OFSeF2PoqupJrsfFWs6NqGmpBZ3cc0ou4ZCiq4OxQwJ+YAelXGV02yJR1SRf1jUtK0rRnsLOaN5GtvsltHHIsjKrLsLuR6Dn3p/g3jRI8drm5/mK85RN52rgeuK77w3qOl2OmLb3NykcgnmcqwcnDHg8CiM7y1CULRLmnp4X083+oW15Ev2olpjLOv7sKxYoqHDDkniuYh8Qxx+I7nVCr/AGOcG1YAfOLdQqq+31yM496wbqPE0sgGQ0jkHHYsTUAqfadilBdT0e/tNE1poryLW3gPlhGNtdqqMoJI3RseD+Fcnr0GnWs+nwWWoTXgUF7lpbkzhX3rt6HaOM9KxCFPUD8qkjhL+wpSqX6BGFjvvFd/YyaO6wXVtLJ9otjsimjdiA3PCnNcF5ykc8UrWuBkDn6VEYnHHFTKam7jjHlRIskea9Dtr7Th4bWI3VsJf7LlTyzNGH3GNht2k5zXm/lP7U3yn9BTjJRCUeYuaVIiatpTs6pGt3bl2YgKAHGSSeK7TxZdWU9rYiG4gmK3DEiKRHIHlnk7Sa4EQ/3vyqTcsa44HpRzaWBxu7noJvdPHhdoftdsJv7JdBEZoxJv8ojbtznNQ+Dryxh0p0nureJ/tcp2yyojY2pzhjmvOmwzFiBz7UVpz6pk8mljstF1qy07UtRW4cLa3k0mZRyqOsjFWOOxBPNbV5pnhK+nk1Ga+iHmBWl8q7iWN9oA3HvnHXBrzPmkwOuBn6UlLSzBx1ujvvDlzpNvqmvmOeCK0OwWzPIEVoxI2NpkINSP4m8jxLLbSXMUmlSRwQxtGUMcUjKG8zevucNz/KvPeT15+tJgUKTSsg5OrO68UQaY8sWo2tzayM7xx3UcU0bMSDhZQFP4H8Kv+Lb2wm0WSOG7tpJPtFoQkU0bvgOCTtU5rzfmkwPQU+bfzFy7Hpnhi+sItEgSa7to5A9zlJJo1fl2xwxzWJ4Y1yy02W6tbtxFBcuJI5TkokoG0h8diMc+3vXHUZJ6k0c2wcu56XPpWiXE8t2mvSxRTMZWjivozGC3J2EtwPaucMehTa8LeW6Mmm8xieW4ZukWR+9b/a/CuWwOwH5UZORycUNp9ASseq6daaVpJeSLW2a02NiCe5gaFc87h349q5+7utC1nxCBPKosPs5t/OL+UryIGIYMfc4GfSuQyjDoP0pCp7E/Q0nK6tYFG2p6dp1tpOjGWRNed7TyyFt7m6gaGPody98/SuH8Ranbahq9zcWvzW4SKFHwR5nljBcA849PpWL5ZHO0fXFG1vSm5XVgUbO5OjoTz+tT5ix+FUdrelB8z3rPlTLuWsg4xQpQZHvUcW7Bzmo5A4Y4ziiwx823HFLCVA5qvhz1zS4cdM07ElmQoRVXil+f3pu1vSqWgma0sqgHHpVHO5/qamn6t9T/ADpsP3xWdramhPKcRke1VKtz/cP1qsKEMApPtTxEx78U8dvpU/8ADUtgQqirg9SPWkmkBG0VI/Q1WpiEFFL6UtACUu0mj0qwvak3YZAY3AzjIpuCeADV/tTV61KkOxXSBj944H61aQJGuBwPU06op/u0XEVpXDOSPpQsbN7Cm1bh+6tU9EBD5BxwahOVODWmfumqE3+sP4VMXcbJ02Y56Y7VLsRlGOPrUEP3asr92m0Iqi3+YkkEZ4FSfZ+OQMe1TL3p3+FTa4yhnyZAexqyLtMDmoLn7wqvVoRf82OXoR9DULRRk5GR9Khj+8KuelJqwEHkp6mpYiqcZPHSnU00gHtIpHWoSVJ6GloptAM496T5fen0lMBhPBxkVEY89WNT0lFwIPLHrSeX71OaQ1QiDy/ejZ71NSUxEXl+9J5fvU1FICHy/f8ASjy/epqKLgQeX70eX71PSUxEPl+9J5fvU1FFwIdhHQ1Kgx15+tLQfun6UbgNZ0H/ANam7196j9aWnYB29fejevvTKKBDxIB60GRT61HRRYB+9aN6+9Mop2FcfvX3o3r60w1sQ/6mD/rmn/oIppCbP//Z” alt=”” class=”wp-image-136″ >

Board Thickness in Construction and Woodworking

In construction and woodworking, board thickness plays a crucial role in determining the strength, stability, and overall performance of the finished product. Common board thicknesses and their uses include:

Plywood

Plywood is a versatile engineered wood product made by gluing together layers of wood veneers. It comes in various thicknesses, each suitable for different applications.

Thickness (inches) Common Uses
1/4 Cabinet backs, drawer bottoms, and thin shelving
3/8 Cabinet sides, drawer sides, and moderate-duty shelving
1/2 Subfloors, roof sheathing, and cabinet carcasses
3/4 Subfloors, stair treads, and workbenches

MDF (Medium Density Fiberboard)

MDF is an engineered wood product made by compressing wood fibers with resin under high heat and pressure. It offers a smooth, consistent surface and is available in various thicknesses.

Thickness (inches) Common Uses
1/4 Cabinet backs, drawer bottoms, and thin shelving
1/2 Cabinet carcasses, shelving, and door cores
3/4 Workbenches, countertops, and flooring underlayment

Lumber

Lumber, or solid wood, is available in a range of thicknesses for various construction and woodworking applications.

Nominal Thickness (inches) Actual Thickness (inches) Common Uses
1 3/4 Furniture, shelving, and general woodworking
2 1-1/2 Framing, beams, and structural components
4 3-1/2 Posts, beams, and heavy-duty framing

Board Thickness in Electronics and Printing

In the electronics and printing industries, board thickness is a critical factor in the production and performance of various components and materials.

PCBs (Printed Circuit Boards)

PCBs are the foundation of modern electronics, and their thickness plays a significant role in their functionality and durability.

Thickness (mm) Common Uses
0.4 High-density, multi-layer boards for compact devices
0.8 Single-layer and double-layer boards for general electronics
1.6 Multi-layer boards for industrial and high-power applications
2.4 Heavy-duty, multi-layer boards for extreme environments

Paper and Cardstock

Paper and cardstock thickness, often expressed in points (pt) or grams per square meter (gsm), affects the printability, durability, and feel of the final product.

Thickness (pt) Thickness (gsm) Common Uses
10 120 Standard flyers and brochures
12 150 High-quality flyers and brochures
14 200 Postcards and business cards
16 250 Sturdy postcards and card stock

Frequently Asked Questions (FAQ)

  1. What is the most common board thickness for plywood?
    The most common plywood thicknesses are 1/4″, 1/2″, and 3/4″, with each thickness serving different purposes, such as cabinet backs, subfloors, and workbenches, respectively.

  2. Can I use a thinner board than recommended for my project?
    While using a thinner board than recommended may save on cost and weight, it can compromise the strength and durability of the finished product. It is generally advisable to use the recommended thickness for your specific application.

  3. What is the difference between nominal and actual lumber thickness?
    Nominal lumber thickness is the “named” dimension of the lumber, while actual thickness is the true measurement after the lumber has been milled and planed. For example, a 2″ nominal thickness board will have an actual thickness of 1-1/2″.

  4. How does board thickness affect the cost of a project?
    Generally, thicker boards cost more than thinner ones due to the increased material usage. However, using a thicker board when necessary can result in a stronger, more durable finished product, potentially saving on long-term maintenance or replacement costs.

  5. Can I layer multiple thin boards to achieve the desired thickness?
    In some cases, layering multiple thin boards can be an effective way to achieve the desired thickness while maintaining stability and strength. This is the principle behind engineered wood products like plywood and MDF. However, for solid lumber applications, it is generally better to use a single board of the appropriate thickness.

Conclusion

Board thickness is a crucial consideration in various industries, from construction and woodworking to electronics and printing. Understanding the available thicknesses and their specific uses can help you select the most appropriate board for your project, ensuring optimal performance, durability, and cost-effectiveness. By taking into account factors such as application, strength, weight, cost, and aesthetics, you can make an informed decision and achieve the best possible results for your project.

CATEGORIES:

Uncategorized

Tags:

No responses yet

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Comments

No comments to show.